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A B S T R A C T
Most of the existing dual-mode tracking algorithms rely on feature fusion design. We propose a
Siamese Dual-level Fusion Attention Network (SiamDL) for RGBT Tracking by combining dual-level
balance module and multi-domain aware module. Dual-level balance module (DLBM) introduces a
new dual-level fusion attention mechanism to utilize the two modal information at decision-level and
feature-level, which is used to provide a more reasonable way to balance the two modal features’
weight ratio. Multi-domain aware module (MDAM) introduces a new cross domain siamese attention
mechanism to make mode-domain (referring to visible and infrared modal branches) and time-domain
(referring to template and search branches) information interact with each other, which is used to
enhance feature expression ability of network and adaptively update template features. The average
tracking speed on rtx3060ti is about 45fps, which suggests that SiamDL has achieved state-of-the-art
performance by carrying out experiments on three RGB-T tracking benchmark datasets.

1. Introduction
Target tracking is an important task in the field of com-

puter vision, which gives an initial target template and esti-
mates its position and size in subsequent frames. With the
emergence of correlation filtering and deep learning, visible
target tracking has achieved significant development. How-
ever, when the target is in dark light, high exposure or sub-
merged in the background, the tracking effect of visible mode
will be greatly reduced.

In most cases, the visible image is rich in the structure
and color information of the target, and the infrared image is
rich in the structure information of the target, which is highly
complementary to the visible image. Thus, introduction of
infrared mode will improve the performance of the tracker
predictably [38]. Therefore, the two modal fusion tracking
algorithm has emerged year by year, and we show the com-
plementarity of infrared and visible images in Fig. 1.

Based on the present problems, how to realize the fu-
sion and utilization of visible and infrared modal images
is worth discussing. The existing fusion tracking methods
can be roughly divided into three categories: pixel-level fu-
sion, feature-level fusion and decision-level fusion methods.
Pixel-level [38] fusion methods fuse images with different
modes to generate images with more information. Feature-
level [37, 43, 32, 9, 23, 40] fusion methods extract the fea-
tures of different modes and fuse them according to the fu-
sion rules designed by different methods. Decision-level [36]
fusion methods track each mode, and then fuse the results.

In the field of RGBT tracking, the tracker based on deep
learning often adopts feature-level fusion strategy, which has
improved significantly. For bimodal fusion features, equal
treatment of its channel weight will hinder the expression
ability [34]. Although the unique information of different
modes can complement each other, in some scenarios, the
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Figure 1: Complementary image between two modes. (a)
shows that visible information is dominant. (b) shows that
both modes are important. (c) shows that infrared information
is dominant.

information that different modes can interact with is very
limited, and even provides negative information. Therefore,
there should be different weight ratios of fusion features for
different scenes. Methods [26, 37, 9, 43, 32] directly use the
feature-level fusion strategy to calculate the channel weight
ratio of fused features, but because the background informa-
tion accounts for a high proportion in the search image, it
inevitably contains a large amount of background informa-
tion, which greatly affects the calculation of the fusion fea-
tures’ weight ratio. We introduce a new dual-level fusion at-
tention mechanism, which uses the information of decision-
level and feature-level to balance the fusion features more
reasonably.

Additionally, the feature expression ability of the net-
work affects its decision ability of each mode, as well as the
classification and regression results of the fused features. In-
spired by [8, 34], we introduce a new cross domain siamese
attention mechanism to realize the interaction of multi-domain
information. For mode-domain, the spatial distribution of
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SiamDL

infrared and visible features should be related, and the crossed
spatial attention can transmit spatial information to differ-
ent modes. For time-domain, cross channel attention can
use rich context information and provide an implicit way to
update the template feature adaptively. Then, we classify
the enhanced features to provide decision information for
the dual-level balance module. Some researchers use gray
images as fake infrared images for pre training to deal with
the shortcomings of large-scale paired RGBT data sets, and
then fine tune the RGBT data sets. However, due to the
gray image is generated by visible image, the network has
a strong dependence on visible image. We classify each pat-
tern, which can also reduce this dependency.

In recent years, the rise of RGBT tracking tasks and the
wide application of attention mechanism have inspired the
current work. However, at present, decision-level informa-
tion is rarely introduced to participate in tracking, which
misses the important information of two modal weight al-
location. Besides, mode-domain and time-domain has rich
context information, which is rarely used in the current re-
search situation. In this study, we propose SiamDL to im-
prove the tracking performance of siamese RGBT tracker in
complex scenes. In SiamDL network, the dual-level fusion
attention mechanism is used to utilize the decision-level and
feature-level information to allocate the two modal weight
ratio more reasonably, and the cross domain siamese atten-
tion mechanism is proposed to utilize rich context informa-
tion to improve feature expression ability of network.

The main contributions of this work can be summarized
as follows:

• By introducing the cross domain siamese attention mech-
anism, we propose a multi-domain aware module
(MDAM). It can update the template feature adaptively,
utilize rich context information of mode-domain and
time-domain to improve feature expression ability of
network.

• By introducing the dual-level fusion attention mecha-
nism, we propose a dual-level balance module (DLBM).
It can utilize the decision-level and feature-level in-
formation to balance the two modal weight ratio more
reasonably.

• Based on SiamBAN [4], our method introduces multi-
domain aware module and dual-level balance mod-
ule to meet the challenge of RGBT tracking. Several
tests were conducted on GTOT, VOT-RGBT2020 and
LasHeR, our tracker achieves state-of-the-art results
and keeps high speed (45FPS,RTX3060ti).

2. Related Work
RGBT fusion tracking is one of the effective methods

to improve the performance of tracker in recent years. This
chapter will introduce the related work from the following
three aspects. 1. Siamese tracker. 2. RGBT tracker. 3.
Attention mechanism applied to tracking.

2.1. Siamese tracker
The trackers [3, 11, 6] based on correlation filtering al-

gorithm have high speed, high performance and strong ex-
pansibility, but the manual features restrict the discrimina-
tion ability of correlation filtering. To overcome this defect,
SiamFC [1] introduced deep learning features into tracking,
used siamese networks to replace manual features and im-
plemented end-to-end training. Consequently, the structure
is simple and efficient. Compare with the correlation filter
trackers, SiamFC does not need to be updated for adopting
high-level semantic features. SiamRPN [16] introduced re-
gional proposal network [27] for classification and regres-
sion, which solved the problem of target scale transforma-
tion. SiamDW [41] had explored the adaptation of deep
network in tracking and optimized the backbone network
to avoid the impact of padding. SiamBAN, SiamCAR [9]
and SiamFC++ [33] introduced the anchor-free mechanism
to change the regression branch from anchor-base, which
avoided hyper-parameters associated with the candidate boxes.
UpdateNet [35] was designed to update templates online,
avoiding interference in some complex scenarios. SiamAttn
[34] adopted the deformable siamese attention mechanism
to contact the context information between the template and
the search branch which could implicitly update the target
template. Ocean [42] applied different scales for correla-
tion operation, making the tracker more robust to target scale
transformation. The above trackers only use the visible light
mode as the information source, and can not deal with the
complex lighting transformation scene.
2.2. RGBT tracker

When the target is in a high exposure, low illumination
environment or submerged in the background, it is difficult
for the tracker to maintain good discrimination ability. SiamFT
[39] introduced siamese network structure into RGBT track-
ing, combining two modal features for tracking while main-
taining high speed. MANet [23] proposed a parallel net-
work structure to extract single-mode unique features and
two modal shared features, but its online tracking process
can not achieve real-time. Guo et al. [9] balanced the weight
of different modal features, and used the strategy of decision-
level fusion to construct the classification branches of two
modes, so as to avoid the same contribution of different modes
in complex scenes. JMMAC [36] constructed a fusion tracker
by comprehensively considering the appearance information
and motion information of the target. Li et al. [19] made full
use of annotation attributes and proposed a challenge aware
network framework to deal with the significant changes in
the appearance of targets. Most of the above trackers focus
on the fusion of feature-level information and rarely use im-
portant decision-level information.Wang et al.[31] propose
an adaptive fusion algorithm based on response map eval-
uation for RGBT tracking. This demonstrates the availabil-
ity and effectiveness of response graphs.But the difference is
that we redesign the feature fusion using decision-level in-
formation.Shen et al.[28] propose a new algorithm, called
cooperative low-rank graph model, to suppress background
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Figure 2: The framework of the proposed SiamDL, which consists of Feature Extraction Network, Multi-Domain Aware Module
(MDAM) and Dual-Level Balance Module (DLBM). We feed the features of layers 3 and 4 in ResNet50 [30] into MDAM
to enhance each modal feature, and then classify each modal feature to obtain decision-level information. DLBM modulates
decision-level and feature-level information to obtain fusion features. Finally, the fusion features are fed into the classification
and regression head.

clutter.This also inspired us to add a classification branch to
enhance the foreground and weaken the influence of back-
ground clutter.
2.3. Attention mechanism applied to tracking

RASNet [30] introduced the attention mechanism for
siamese series trackers, added spatial and channel attention
to the target template, but only modified the template and
ignored the search image branch. SiamAttn [34] introduced
a deformable siamese attention network to jointly calculate
self-attention and cross channel attention, which could en-
hance the discrimination ability of the tracker. Xu et al. [32]
constructed attention mechanisms for their modes at differ-
ent backbone layers, but limited the speed of the tracker.
Zhu et al. [43] used the channel attention mechanism to re-
distribute weights for different modal features, which could
avoid the same contribution of different modes in complex
scenes. SiamCDA [37] applied the attention mechanism to
bridge the gap between the two modal features through com-
plementary information. CMC2R[22] fuses local features
and global representations under different resolutions through
the transformer layer of the encoder block, and the two modal-
ities are collaborated to get contextual information by the
spatial and channel self-attention.For two modal scenarios,
decision-level information can also be one of the important
sources of attention mechanism applied to tracking.

3. Methods
This chapter describes the details of SiamDL network

structure. As shown in Fig. 2, SiamDL takes SiamBAN as
baseline, introduces dual-level fusion attention mechanism
and cross domain siamese attention mechanism. Therefore,

SiamDL includes feature extraction network, MDAM, DLBM
and tracking head.

Overview: We use the first four layers of ResNet50 [30]
as our backbone and feed the two modal template and search
images to the feature extraction network to obtain the fea-
tures. After that, the features are enhanced by the MDAM.
The next step is classify each modal feature to obtain de-
cision information, and then the decision-level and feature-
level information are fed to the DLBM to balance the fused
features, Finally, we get the location of target through clas-
sification and regression head.
3.1. Efficient Feature Extraction Network Design

In tracking, it is proved to be very effective [10, 34, 4]
that fuse the output results of the last three layers of ResNet50
[30]. However, in RGB-T tracking, if all ResNet50 layers are
used to extract features, the tracking speed will be greatly
slowed down. If the layer 5 is removed, part of the receptive
field is reduced with only a little loss of accuracy [4, 42]. We
use the first four layers of ResNet50 as our backbone to ex-
tract features, and the outputs of 3 and 4 layers are involved
in the calculation of the following networks. In the fourth
layer network, the downsampling operation is replaced by
atrous convolution. In order to extract each modal unique
features and balance the speed and parameter quantity ,we
set the parameters of the first two layers of our backbone
as shared in all domains, and all parameters are shared in
time-domain.The first two layers of our backbone are marked
as 𝜙1,2, the 3, 4 layers of each mode-domain are marked as
𝜙𝑣3,𝑣4, 𝜙𝑖3,𝑖4.

In our backbone, the number of output channels of the
3 and 4 layers is different, so we reduce all features to 256
channels through 1x1 convolution layer. For the visible and
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Figure 3: Illustration of cross domain siamese attention module. It consists of channel and spatial attention module, which is
subdivided into self and cross attention modes for different modulation objects. This module is used to realize the interaction of
time-domain and mode-domain information, furthermore, it can also update the template feature adaptively. To avoid complex
wiring in Fig. 3, we simplified this figure by using jumper wires. And the corresponding wiring is lettered S or C in the same
color.

infrared template branches, we crop the convoluted features
and keep the center of 7×7 area. It can not only keep the
whole target information, but also weaken the impact of the
background [10, 34, 15]. For the search branches, we do
not perform the crop operation. And these convolution and
crop operations of each mode are marked as 𝑐𝑜𝑛𝑣𝑣, 𝑐𝑜𝑛𝑣𝑖.We mark the input visible template image as 𝑧𝑣, the infrared
template image as 𝑧𝑖, the visible search image as 𝑥𝑣, and the
infrared search image as 𝑥𝑖. Then there are:

𝑓𝑧𝑣 = 𝑐𝑜𝑛𝑣𝑣(𝜙𝑣3,𝑣4(𝜙1,2(𝑧𝑣))) (1a)
𝑓𝑧𝑖 = 𝑐𝑜𝑛𝑣𝑖(𝜙𝑖3,𝑖4(𝜙1,2(𝑧𝑖))) (1b)
𝑓𝑥𝑣 = 𝑐𝑜𝑛𝑣𝑣(𝜙𝑣3,𝑣4(𝜙1,2(𝑥𝑣))) (1c)
𝑓𝑥𝑖 = 𝑐𝑜𝑛𝑣𝑖(𝜙𝑖3,𝑖4(𝜙1,2(𝑥𝑖))) (1d)

Where 𝑓𝑧𝑣,𝑓𝑧𝑖,𝑓𝑥𝑣,𝑓𝑥𝑖 represents the visible template, in-
frared template, visible search and infrared search features,
output by the feature extraction network.
3.2. Multi-Domain Aware Module

As shown in Fig. 2, we proposed that MDAM consists
of a cross domain siamese attention module and two classifi-
cation heads. The features obtained from the feature extrac-
tion network are put into the cross domain siamese attention
module, modulated and interacted with multi-domain con-
text information. Then the modulated features are put into
the classification heads to obtain the classification results.
These classification results can be fed to the follow-up net-
work as decision information.

Yu, Y et al. [34] proposed that treating all channel fea-
tures equally will hinder the representation ability. In addi-

tion, and the rational use of attention mechanism can allevi-
ate this limitations. In particular, there is more information
for us to interact in RGB-T target tracking. For example, we
can interact more texture information in time-domain, while
we can make each position on the feature map obtain two
modal global context in mode-domain. Inspired by this, we
design a cross domain siamese attention mechanism to inter-
act, meanwhile, it can update template feature adaptively.

As shown in Fig. 3, the cross domain siamese atten-
tion module consists of channel and spatial attention mod-
ule, which is subdivided into self and cross attention way
for different modulation objects. In order to avoid complex
wiring in Fig. 3, we introduce wire jumpers to simplify the
figure, and corresponding wiring is lettered 𝑆 or 𝐶 of the
same color.

Both channel and spatial attention mechanism include
query matrix 𝑄, key matrix 𝐾 , and value matrix 𝑉 [8, 34].
Take the modulation of feature𝑋 to feature 𝑌 as an example.

Spatial attention mechanism in MDAM. For feature
𝑋, 𝑌 , 𝑋, 𝑌 , 𝑋, 𝑌 ∈ 𝐶 × 𝐻 × 𝑊 . 𝑄 is generated by 𝑋
through a 1 × 1 convolution. The number of 𝑄, 𝐾 matrix
channels is modulated to 1/8 of the original number, 𝑄,𝐾 ∈
𝐶 ′ × 𝐻 × 𝑊 , where 𝐶 ′ = 𝐶∕8. Then reshape 𝑄,𝐾 to
𝑄′, 𝐾 ′ ∈ 𝐶 ′ ×𝑁 , where 𝑁 = 𝐻 ×𝑊 .Therefore, we can
get the attention map 𝐴 as:

𝐴 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑄
′𝑇𝐾 ′), 𝐴 ∈ 𝑁 ×𝑁 (2)

𝑠𝑜𝑓𝑡𝑚𝑎𝑥 means normalizing the data of the last dimen-
sion of the feature array. As for modulating feature 𝑌 , the
value matrix 𝑉 is generated by 𝑌 through a 1×1 convolution,
and then reshape 𝑉 , 𝑌 to 𝑉 ′, 𝑌 ′, 𝑉 ′, 𝑌 ′ ∈ 𝐶 ×𝑁 .Therefore,
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the spatial attention feature 𝑆 ′𝑌
𝑋 is modulated by the input

feature 𝑋 to the feature 𝑌 as:

𝑆
′𝑌
𝑋 = 𝛼 ⋅ 𝑉 ′𝐴 + 𝑌 ′, 𝑆

′𝑌
𝑋 ∈ 𝐶 ×𝑁 (3)

Where 𝛼 is a scalar parameter. Finally, we reshape the
modulated spatial attention feature to the size of feature 𝑌 to
obtain 𝑆𝑌

𝑋 , 𝑆
𝑌
𝑋 ∈ 𝐶 ×𝐻 ×𝑊 .

Channel attention mechanism in MDAM. The imple-
mentation method of matrix 𝑄,𝐾, 𝑉 is different from that in
spatial attention mechanism.

For feature𝑋, 𝑌 ,𝑋 ∈ 𝐶 ×𝐻1 ×𝑊1, 𝑌 ∈ 𝐶 ×𝐻2 ×𝑊2.
Where 𝐻1 and 𝑊1 need not be equal to 𝐻2 and 𝑊2. Feature
𝑋 reshapes to generate𝑄,𝐾 ,𝑄,𝐾 ∈ 𝐶 ×𝑁1, 𝑁1 = 𝐻1 ×𝑊1.
Then the attention map A is described as:

𝐴 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑄𝐾𝑇 ), 𝐴 ∈ 𝐶 × 𝐶 (4)
As for modulating feature 𝑌 , 𝑌 reshapes the generated

value matrix𝑉 , 𝑉 ∈ 𝐶 ×𝑁2, 𝑁2 = 𝐻2 ×𝑊2. Then the spa-
tial attention feature 𝐶 ′𝑌

𝑋 modulated by the input feature 𝑋
to the feature 𝑌 is described as:

𝐶
′𝑌
𝑋 = 𝛽 ⋅ 𝑟𝑒𝑠ℎ𝑎𝑝𝑒(𝐴𝑉 ) + 𝑌 , 𝐶𝑌

𝑋 ∈ 𝐶 ×𝑁2 (5)
Where 𝛽 is a scalar parameter. Finally, the modulated

channel attention feature is reshaped back to the size of fea-
ture 𝑌 to obtain 𝐶𝑌

𝑋 , 𝐶
𝑌
𝑋 ∈ 𝐶 ×𝐻2 ×𝑊2.

The features obtained by feature extraction network are
𝑓𝑧𝑣, 𝑓𝑧𝑖, 𝑓𝑥𝑣, 𝑓𝑥𝑖. After the cross domain siamese attention
module, we obtain the features as:

𝐹𝑧𝑣 = 𝑆𝑓𝑧𝑣
𝑓𝑧𝑣

+ 𝐶𝑓𝑧𝑣
𝑓𝑧𝑣

+ 𝑆𝑓𝑧𝑣
𝑓𝑧𝑖

+ 𝐶𝑓𝑧𝑣
𝑓𝑥𝑣

(6a)
𝐹𝑧𝑖 = 𝑆𝑓𝑧𝑖

𝑓𝑧𝑖
+ 𝐶𝑓𝑧𝑖

𝑓𝑧𝑖
+ 𝑆𝑓𝑧𝑖

𝑓𝑧𝑣
+ 𝐶𝑓𝑧𝑖

𝑓𝑥𝑖
(6b)

𝐹𝑥𝑣 = 𝑆𝑓𝑥𝑣
𝑓𝑥𝑣

+ 𝐶𝑓𝑥𝑣
𝑓𝑥𝑣

+ 𝑆𝑓𝑥𝑣
𝑓𝑥𝑖

+ 𝐶𝑓𝑥𝑣
𝑓𝑧𝑣

(6c)
𝐹𝑥𝑖 = 𝑆𝑓𝑥𝑖

𝑓𝑥𝑖
+ 𝐶𝑓𝑥𝑖

𝑓𝑥𝑖
+ 𝑆𝑓𝑥𝑖

𝑓𝑥𝑣
+ 𝐶𝑓𝑥𝑖

𝑓𝑧𝑖
(6d)

Where 𝐹𝑧𝑣, 𝐹𝑧𝑖, 𝐹𝑥𝑣, 𝐹𝑥𝑖 represent visible template, in-
frared template, visible search and infrared image features
after cross domain aware module.

Finally, the modulated features are classified by two clas-
sification heads. And the classification head refers to SiamBAN.
We feed 𝐹𝑧𝑣,𝐹𝑥𝑣 to visible classification module 𝐶𝑙𝑠𝑣 to ob-
tain the visible light classification result 𝑉𝑚𝑎𝑝, feed 𝐹𝑧𝑣,𝐹𝑥𝑣to visible classification module 𝐶𝑙𝑠𝑖 to get the visible light
classification result 𝐼𝑚𝑎𝑝.
3.3. Dual-Level Balance Module

As shown in Fig. 2, the DLBM is composed of two
paddingconv modules and a dual-level fusion attention bal-
ance module. Since the classification results obtained in the
multi-domain sensing module are two 25×25 maps, through
the paddingconv module, the size of the maps is increased

to 31 × 31 and aligned with the search features, which di-
lates the classification results. Then the features and dilated
classification results are fed to the dual-level fusion attention
module to allocate the weight ratio of fusion features.

Paddingconv module consists of two conv layers with
padding and one relu layer, which adaptively dilates the clas-
sification results. We believe that the weight allocation of
fusion features can not rely on the information of the whole
graph, but on the distinguishability between the target and
the background. Therefore, we use Paddingconv module to
adaptively dilate the classification result to generate a mask
that extracts only the features of the target and part of the
background around the target.

The template and search images are fed to the network
in the same way as SiamBAN. For template branches, we
cut an area about twice the size of the target as our template,
which is centered on the target. Obviously, the background
area accounts for about 3/4. After multiple convolution lay-
ers, we only use the central region feature to feed the subse-
quent network. The influence of the background is not sig-
nificant. Therefore, in template branching, we directly use
feature 𝐹𝑧𝑣, 𝐹𝑧𝑖 as the allocation source of fusion features.

However, for the search branch, an area about four times
the size of the target is cropped out, and the background area
accounts for about 7/8. After multiple convolution layers,
the size becomes 31×31, and no crop operation is performed.
The influence of the background is significant. Some stud-
ies [26, 37, 9, 43, 32] directly use the fusion features of the
search area for weight allocation, which can not avoid the
influence of the background. We use the mask generated by
paddingconv module as an auxiliary to allocate the weight
through the information of decision-level and feature-level.

We feed the classification results 𝑉𝑚𝑎𝑝 and 𝐼𝑚𝑎𝑝 to the
paddingconv module to generate masks 𝑉𝑚𝑎𝑠𝑘 and 𝐼𝑚𝑎𝑠𝑘.
Through the mask, the key information such as the target’s
own information and the distinguishability between the tar-
get and the background are extracted:

𝐾𝑥𝑣 = 𝑉𝑚𝑎𝑠𝑘 ⋅ 𝐹𝑥𝑣 (7a)
𝐾𝑥𝑖 = 𝐼𝑚𝑎𝑠𝑘 ⋅ 𝐹𝑖𝑣 (7b)

Where 𝐾𝑥𝑣 is visible feature’s key information, 𝐾𝑥𝑖 is
infrared feature’s key information.

After obtaining the decision-level information, we use
the dual-level information to balance the existing features.
As shown in Fig. 4, the dual-level fusion attention module
uses the attention mechanism to allocate the weight ratio of
two modal features. Different from the attention mechanism
in Section B, the attention mechanism in this section aims
to realize the weight allocation of fused feature. Take the
modulation of feature 𝑋 to feature 𝑌 as an example.

Spatial attention mechanism in DLBM. Input feature
𝑋,𝑋 ∈ 𝐶 × 𝐻 × 𝑊 , calculate the average pool and max-
imum pool in channel dimension, aggregate the channel in-
formation of feature 𝑋, and obtain 𝑓𝑎𝑣𝑔 , 𝑓𝑚𝑎𝑥. We concat
𝑓𝑎𝑣𝑔 , 𝑓𝑚𝑎𝑥 and then pass through the conv layer to generate
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Figure 4: Illustration of dual-level fusion attention balance module, which uses the attention mechanism to allocate the weight
ratio of two modal features. It can utilize the decision-level and feature-level information to balance the two modal features’
weight ratio more reasonably.

a 2D spatial attention map 𝐹 , 𝐹 ∈ 1 × 𝐻 × 𝑊 . And 𝐹 is
calculated

𝐹 = 𝜎(𝐶𝑜𝑛𝑣7×7([𝐴𝑣𝑔𝑝𝑜𝑜𝑙(𝑋);𝑀𝑎𝑥𝑝𝑜𝑜𝑙(𝑋)]))

= 𝜎(𝐶𝑜𝑛𝑣7×7([𝑓𝑎𝑣𝑔; 𝑓𝑚𝑎𝑥]))
(8)

Where 𝐶𝑜𝑛𝑣7×7 represents a conv operation with 7 × 7
kernel size. 𝜎 Represents sigmoid function.

The spatial attention feature is modulated by the input
feature X to the feature Y as:

𝑆𝑌
𝑋 = 𝛼 ⋅ 𝐹𝑌 + 𝑌 , 𝑆𝑌

𝑋 ∈ 𝐶 ×𝐻 ×𝑊 (9)
Where 𝛼 is a scalar parameter.
Channel attention mechanism in DLBM. Input fea-

ture 𝑋,𝑋 ∈ 𝐶 × 𝐻 × 𝑊 , calculate the average pool and
maximum pool in spatial dimension, aggregate the spatial
information of feature 𝑋, and obtain 𝑓𝑎𝑣𝑔 , 𝑓𝑚𝑎𝑥. We input
𝑓𝑎𝑣𝑔 , 𝑓𝑚𝑎𝑥 into the full connection layer to generate the chan-
nel attention map 𝐹 , 𝐹 ∈ 𝐶 × 1. 𝐹 is calculated as:

𝐹 = 𝜎(𝐹𝐶(𝐴𝑣𝑔𝑝𝑜𝑜𝑙(𝑋)) + 𝐹𝐶(𝑀𝑎𝑥𝑝𝑜𝑜𝑙(𝑋)))
= 𝜎(𝐹𝐶(𝑓𝑎𝑣𝑔) + 𝐹𝐶(𝑓𝑚𝑎𝑥))

(10)

where 𝐹𝐶 represents the full connectivity layer. 𝜎 Rep-
resents sigmoid function. Then the channel attention feature
is modulated by the input feature 𝑋 to the feature 𝑌 as:

𝐶𝑌
𝑋 = 𝛽 ⋅ 𝐹𝑌 + 𝑌 , 𝐶𝑌

𝑋 ∈ 𝐶 ×𝐻 ×𝑊 (11)
Where 𝛽 is a scalar parameter.

Finally, we use concat function to combine 𝐹𝑧𝑣, 𝐹𝑧𝑖 into
𝐹𝑧 , 𝐹𝑥𝑣, 𝐹𝑥𝑖 into 𝐹𝑥 and 𝐾𝑥𝑣, 𝐾𝑥𝑖 into 𝐹𝑥. Then the weight
allocation method of two mode features are described as:

𝐹 ′
𝑍 = 𝐶𝐹𝑧

𝐹𝑧
+ 𝑆𝐹𝑧

𝐹𝑧
(12a)

𝐹 ′
𝑋 = 𝐶𝐹𝑥

𝐾𝑥
+ 𝑆𝐹 ′

𝑥
𝐾𝑥

(12b)
Where𝐹 ′

𝑍 , 𝐹
′
𝑋 represent the template and search features

after passing through the DLBM.
3.4. GroundTruth And Loss

We use end-to-end training. And training loss is a
weighted combination of visible mode classification loss, in-
frared mode classification loss, fusion feature classification
and regression loss.

𝐿 = 𝜆1𝐿𝑐𝑙𝑠𝑣 + 𝜆2𝐿𝑐𝑙𝑠𝑖 + 𝜆3𝐿𝑐𝑙𝑠 + 𝜆4𝐿𝑟𝑒𝑔 (13)
Among them, both classification head and regression head

refer to SiamBAN. In details, the classification branch adopts
cross entropy loss and elliptical classification label, while the
regression branch adopts anchor-free method and IoU loss.
Additionally, we set 𝜆1 = 0.2, 𝜆2 = 0.2, 𝜆3 = 1, 𝜆4 = 1
during trainings.

4. Experiments
4.1. Implementation Details

Training. The template image size is 127 × 127, the
search image size is 255 × 255. Our model is trained for
20 epochs with Adaptive Moment Estimation(Adam) with
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a minibatch of 16 pairs, while the weight decay is set as
0.0001. We use a warmup learning rate of 0.001 to 0.005 in
the first 5 epochs and a learning rate exponentially decayed
from 0.005 to 0.00005 in the last 15 epochs. Our backbone
networks are initialized by the weights pre-trained on Ima-
geNet [29]. At the beginning 10 epochs of training, freeze all
the parameters of backbone networks, and then finetune the
parameters of backbone networks’ last two layers. In addi-
tion, we add high exposure, low illumination and blur strate-
gies to make the image quality worse for data augmentation.
We alternately degrade the image quality of the two modes,
which is helpful to enhance the performance of our tracker.

Inference. We crop the template image from the first
frame. For subsequent frames, we crop the search image
from each frame, and then we feed it to the network together
with the template image to get the results of classification
and regression. Finally, we use the regression results to pun-
ish the scale change and the cosine window to punish the dis-
tance from the search image’s center [16], which generates
two weight masks to update the classification results. Then
we find the spatial position with the highest score in the up-
dated classification result, and select the regression predic-
tion box corresponding to the spatial position to update the
current tracking box.

Our method is implemented in Python using PyTorch ,
and we use Nvidia RTX 3060ti.
4.2. Dataset and Evaluation Metrics

GOT10K [13] contains more than 10000 visible sequences
and 560 classes of objects, covering most moving objects
comprehensively and fairly. On average, each sequence con-
tains 150 frames, and each frame provides accurate man-
ual annotation. Moreover, compared with similar tracking
datasets, the classes are more abundant. Based on these ad-
vantages, GOT10K is very suitable for training tracking tasks.

LaSOT [7] contains 1400 visible sequences and 70 classes
of objects. On average, each sequence contains 2500 frames,
but the time interval between frames is smaller than GOT10K.
And each frame provides accurate manual annotation.

GTOT [17] contains 50 visible and infrared paired se-
quences. On average, each single-mode sequence contains
150 frames. GTOT has 7 challenging attributes. However,
the dataset have few classes, low resolution and poor quality.

RGBT234 [18] contains 234 visible and infrared paired
sequences. On average, each single-mode sequence contains
150 frames. RGBT234 has 12 challenging attributes, and
there are fewer classes of this dataset.

VOT-RGBT2020 [24] contains 60 visible and infrared
paired sequences, and these 60 sequences are a subset of
RGBT234. For ease of use, we name the sequences with-
out VOT-RGBT2020 as rgbt174.

LasHeR [20] contains 1224 visible and infrared paired
sequences. On average, each single-mode sequence contains
600 frames. It has 19 challenging attributes and 32 classes
of objects. And it is the first large-scale data set in the two
mode tracking challenge.

We adopt GOT10K and LaSOT to carry out pre-training

network, and use the gray image to replace the infrared im-
age for end-to-end training. In order to be consistent with
the training datasets used by the methods we compared. We
finetune on RGBT234 to test GTOT, finetune on GTOT and
rgbt174 to test VOT-RGBT2020, finetune on LasHeR train-
ing subset to test LasHeR testing subset.

When testing GTOT, we use precision rate (PR) and suc-
cess rate (SR) as evaluation Metrics. PR is the percentage
of frames whose distance between the output position and
the ground truth position is within a threshold. And we set
this threshold to 5 pixels. SR is the percentage of frames
whose overlap ratio between the output bounding box, and
the ground truth bounding box is larger than the overlap thresh-
old. We count the area under the curves (AUC) as SR score.

When testing VOT-RGBT2020, accuracy (A), robust-
ness (R) and expected average overlap (EAO) are used to
evaluate our trackers. Refer to the new EAO agreement in
[14].

When testing LasHeR, precision rate (PR), success rate
(SR) and normalized precision rate (NPR) are used to eval-
uate our trackers. PR and SR are the same as above, and we
set the PR threshold to 20. The detailed calculation of NPR
refer to [25].

Table 1. Results on GTOT, including SiamRPN++,
ATOM, DIMP, SiamFT, SGT, mfDIMP, MANet, SiamBAN,
SiamBAN
(RGBT) and SiamDL . The red, blue, and green fonts repre-
sent the first three values.

Table 2. Results on VOT-RGBT2020, including SiamDL,
SiamBAN(RGBT), and seven trackers from the VOT RGBT
2020 challenge [24]. The red, blue, and green fonts represent
the first three values.
4.3. Comparison with State-of-the-art Trackers

GTOT:Table 1 and Figure 5 show the comparison re-
sults on GTOT with short sequences.Table 1 shows the per-
centage of PR/SR values of each tracker under each scene
video sequence of the GTOT dataset.The comparison results
include SiamRPN++[15], ATOM[5], DIMP[2], SiamFT,
SGT[21], mfDIMP, MANet,
SiamBAN, SiamDL and SiamBAN (RGBT).Among them,
SiamBAN (RGBT) is also the tracker implemented in this
paper. After obtaining the visible light and infrared features
through the ResNet50 network, the two features are directly
combined by channel, and then the connected features are
sent to the tracking classification regression head.Red, blue
and green fonts represent the top three in that order.The PR
of this algorithm tracker SiamDL is 0.888 and the SR is
0.731. Previously, the best performing tracker was MANet
with PR of 0.894 and SR of 0.724.In contrast, SiamDL lags
behind MANet in OCC (occlusion), FM (fast moving), and
SO (small target) scenes, but performs better than MANet in
LI (low illumination) and thermal crossover (TC) scenes.
Compared with the benchmark algorithm SiamBAN (RGBT)
tracker, the proposed tracker achieves the PR of over 7.7%
and the SR of over 4.4% in the GTOT full scene.Figure 5
shows the comparison results of PR/FPS and SR/FPS of each
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Table 1
Results on GTOT

SiamRPN++ ATOM DIMP SiamFT SGT mfDIMP MANet SiamBAN
SiamBAN
(RGBT) SiamDL

OCC 70.3/58.7 67.4/55.1 75.7/63.8 75.3/58.6 81.0/56.7 80.7/64.3 88.2/69.6 67.2/54.9 76.4/64.1 83.3/67.8

LSV 76.5/64.3 78.9/64.2 81.4/69.0 79.7/61.4 84.2/54.7 90.5/73.9 86.9/70.6 78.3/64.2 86.3/71.3 88.6/71.7

FM 75.9/65.9 74.8/63.0 78.9/68.0 72.1/60.1 79.9/55.9 81.3/68.7 87.9/69.4 74.3/62.0 80.2/68.5 84.8/70.6

LI 68.9/58.3 68.3/58.4 69.8/61.1 78.6/63.6 88.4/65.1 83.0/70.4 91.4/73.6 66.8/56.0 82.1/69.3 93.0/75.8

TC 76.6/64.0 79.0/63.3 84.2/68.7 76.0/59.3 84.8/61.5 80.4/65.2 88.9/70.2 76.3/61.0 72.7/62.0 86.1/70.9

DEF 71.0/59.3 69.1/58.8 69.9/59.9 72.5/61.9 91.9/73.3 80.7/67.1 92.3/75.2 66.1/55.5 80.9/67.3 91.2/73.8

SO 82.2/64.7 83.7/62.9 84.2/64.0 79.3/59.3 91.7/61.8 87.4/69.1 93.2/70.0 79.3/59.3 74.9/61.1 89.3/69.8

ALL 72.5/61.7 72.6/61.2 75.7/64.9 75.8/62.3 85.1/62.8 83.6/69.7 89.4/72.4 71.7/59.3 81.1/68.7 88.8/73.1

Figure 5: Speed comparison of various trackers on GTOT. The left figure compares PR and FPS, and the right figure compares
SR and FPS.

tracker. It can be seen that SiamDL maintains high speed,
and its performance is also close to SOTA.

VOT-RGBT2020: Table 2 shows the comparison re-
sults on VOT-RGBT2020 with long sequences. Our tracker
achieves 0.637 accuracy, 0.816 robustness and 0.39 EAO.
The EAO value is consistent with the DFAT, which is the
champion of the VOT RGBT 2020 challenge. Compared
with our benchmark SiamBAN(RGBT), our tracker surpasses
its robustness of 6.5% and EAO of 3.5%.

LasHeR: Fig. 6 shows the comparison results on LasHeR
with long sequences. While it is worth noting that only the

test results of MANet and mfDIMP are published by other
researchers [20]. And our tracker achieves 0.566 PR,0.437
SR and 0.521 NPR, which are lower than mfDIMP and higher
than MANet. Compared with our benchmark SiamBAN(RGBT),
our tracker surpasses its PR of 4.5% and SR of 3.8%, beyond
its NPR of 3.8%.

Table 3. Results of ablation experiments on model struc-
tures. SiamBAN(no layer 5)+RGBT is our baseline which
is a tracker obtained by removing all added modules from
SiamDL. CDSAM: cross domain siamese attention module.
CLS: the classification heads for each modes. DLBM: dual-

Table 2
Results on VOT-RGBT2020

Ours
SiamBAN
(RGBT) JMMAC AMF DFAT

SiamDW
-T mfDIMP SNDCFT M2C2Frgbt

A 0.637 0.654 0.662 0.63 0.672 0.654 0.638 0.630 0.636

R 0.816 0.751 0.818 0.822 0.779 0.791 0.793 0.789 0.722

EAO 0.39 0.355 0.42 0.412 0.39 0.389 0.38 0.378 0.332
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Figure 6: Results on LasHeR using precision (PR), success (SR) plots and normalizes precision (NPR) , including SiamDL,
SiamBAN( RGBT), mfDIMP and MANet. Only the test results of MANet and mfDIMP are published in [20].

Table 3
Results of ablation experiments on model structures.

Method PR ΔPR SR ΔSR NPR ΔNPR

Baseline 0.521 0.399 0.483

Baseline + CDSAM 0.540 +1.9% 0.416 +1.7% 0.496 +1.3%

Baseline + CDSAM + CLS 0.547 +2.6% 0.417 +1.8% 0.500 +1.7%

Baseline + CDSAM + CLS + DLBM 0.566 +4.5% 0.437 +3.8% 0.521 +3.8%

level balance module.
Table 4. Results of ablation experiments on attention

mode. MDAM: multi-domain aware module. DLBM: dual-
level balance module. CDSAM: cross domain siamese at-
tention mechanism which is the implementation method of
attention mechanism in MDAM. DLFAM: dual-level fusion
attention mechanism which is the implementation method of
attention mechanism in DLBM.

Table 5. Results of ablation experiments on source of
balance module. Feature-Level means that directly using
feature level information to balance the two modal features’
weight ratio. Feature-Level + Decision-Level means that us-
ing feature-level and decision-Level information to balance
the two modal features’ weight ratio.
4.4. Ablation Study

We study the impact of individual components in SiamDL,
and conduct ablation study on LasHeR to test subset.

Model architecture. Table 3 shows the results of abla-
tion experiments on model architecture. We use SiamBAN(RGBT)
as baseline. By adding the cross domain siamese attention
module, the indices PR, SR and NPR are improved from
0.521 to 0.540, 0.399 to 0.416 and 0.483 to 0.496. It shows
that the interaction of rich context information is very impor-
tant for two modal tracking, which makes the tracker more
robust. Then we classify the enhanced features, which im-
proves the indices from 0.540 to 0.547, 0.416 to 0.417 and
0.496 to 0.500. It can alleviate the dependence of the net-
work on the visible mode and ensure that each mode can

be extracted with rich features. Finally, we introduce the
DLBM, which makes our indices finally from 0.547 to 0.566,
0.417 to 0.437 and 0.500 to 0.521. And the final results of
DLBM are 4.5 %, 3.8% and 3.8%, which are higher than
these of the baseline respectively.

Attention mode. In this paper, the attention mechanism
of cross domain siamese attention mechanism and dual-level
fusion attention mechanism are different. We have made re-
placement tests on their implementation methods, as shown
in Table 4.Among them, MDAM represents the multi-domain
perception module, and DLBM represents the dual-level bal-
ance module. CDSAM stands for Cross-Domain Siamese
Attention Mechanism, and CDSAM is an implementation
of the attention mechanism in MDAM. DLFAM stands for
Two-Level Fusion Attention Mechanism, which is an imple-
mentation method of the attention mechanism in DLBM.
The implementation of reference [8] in the cross domain
siamese attention mechanism and the implementation of ref-
erence [12] in the dual-level fusion attention mechanism have
the highest index performance in LasHeR.

Source of balance module. Our method uses decision-
level and feature-level information as the input of dual-level
fusion attention mechanism. As shown in Table 5, Feature-
Level refers to the direct use of feature-level information to
balance the weight ratio of modal features. Feature-Level +
Decision-Level refers to the use of feature-level and decision-
level information to balance the weight ratio of modal fea-
tures. Different from [37, 9] and other studies, they directly
use feature level information to balance the mode features’
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Table 4
Results of ablation experiments on attention mode.

MDAM DLBM

CDSAM DLFAM CDSAM DLFAM
PR SR NPR

✓ ✓ 0.542 0.424 0.515

✓ ✓ 0.545 0.428 0.506

✓ ✓ 0.559 0.432 0.514

✓ ✓ 0.566 0.437 0.521

Table 5
Results of ablation experiments on source of balance module.

Method PR SR NPR

Feature-Level 0.552 0.436 0.494

Feature-Level + Decision-Level 0.566 0.437 0.521

weight ratio. The results show that, the introduction of decision-
level information is a more reasonable way to balance two
mode features’ weight ratio.

Efficiency analysis. In order to give consideration to ac-
curacy and speed, we use the first four layers of ResNet50 as
our backbone to extract features, and the outputs of 3 and
4 layers are involved in the calculation of the following net-
works. Our tracker has reached 45 fps on 3060ti. We replace
our backbone, as shown in Fig. 7, although using all layers
of ResNet50 as the backbone has the highest performance,
fps is only 20.

Qualitative analysis of ablation studies. Table 6 shows
the percentage comparison results of PR/SR performance of
each module in each scene sequence of GTOT dataset. Since
the challenges faced in this chapter are illumination trans-
formation, low-illumination scenes, and thermal crossovers,
the qualitative analysis of ablation experiments in this sub-
section focuses on sequential low-lightness (LI) and thermal
crossover (TC) scenarios accordingly.

The Multi-Domain Perception Module (MDAM) is added
to the Baseline tracker to transfer the information in the tem-
poral and modal domains to each other, which enhances the
cross-domain representation of features, which makes the
tracker accurate in low-light (LI) and thermal cross (TC) sce-
narios. The rate of PR has increased by 4% and 7.8%, and
it can better cope with the small target (SO) scenario. The
overall performance PR has increased by 3.5% and SR has
increased by 2.2%.

The Baseline tracker adds a dual-level balance module
(DLBM) to adaptively balance the weight distribution ra-
tio after feature fusion using decision-level and feature-level
information, which enhances the tracker’s ability to adap-
tively select features, which makes the tracker in low illumi-
nation (LI) , the thermal crossover (TC) scene accuracy rate
PR value has increased by 6% and 9.5%, the overall perfor-
mance PR has increased by 4.4%, and the SR has increased
by 2.8%. This shows that in the scene with complex illumi-
nation and temperature, the tracker is very effective for the

Figure 7: Results of ablation experiments on efficiency analysis. The left figure compares PR and FPS, the middle figure compares
SR and FPS and the right figure compares NPR and FPS. The numbers 3, 4 and 5 represent that the output results of the
ResNet50’s corresponding layers are used to participate in the calculation of subsequent networks in SiamDL.
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Table 6
Ablation experiment results of PR/SR qualitative analysis of each scene in the dataset GTOT

OCC LSV FM LI TC DEF SO ALL FPS

Baseline 76.4/64.1 86.3/71.3 80.2/68.5 82.1/69.3 72.7/62.0 80.9/67.3 74.9/61.1 81.1/68.7 63

Baseline+
MDAM 78.0/64.6 83.8/68.9 78.1/68.3 86.1/71.4 80.5/68.0 87.1/71.6 82.1/65.3 84.6/70.9 54

Baseline+
DLBM 79.8/65.9 84.5/69.9 77.3/66.8 88.1/69.3 82.2/68.7 87.5/71.9 83.2/66.0 85.5/71.5 56

Baseline+
MDAM+DLBM

=SiamDL
83.3/67.8 88.6/71.7 84.8/70.6 93.0/75.8 86.1/70.9 91.2/73.8 89.3/69.8 88.8/73.1 45

adaptive balance of fusion features.
Finally, the Baseline tracker adds a multi-domain per-

ception module (MDAM) and a dual-level balance module
(DLBM) at the same time to form the dual-modal tracking
algorithm SiamDL based on feature-level and decision-level
fusion attention proposed in this chapter, which makes the
tracker in low illumination. (LI) and thermal crossover (TC)
scenarios, the accuracy rate PR values are increased by 10.9%
and 13.4%, the overall performance PR is increased by 7.7%,
and the SR is increased by 4.4%. This shows that SiamDL
maintains a high speed of 45FPS and has very robust perfor-
mance when dealing with challenges such as illumination
transformation, low-light scenes, and thermal crossover.

5. Conclusion
We design a siamese dual-level and multi-domain atten-

tion network for RGBT tracking. In details, cross domain
siamese attention mechanism and dual-level fusion atten-
tion mechanism are introduced. And the former uses the
rich context correlation of mode domain and time domain to
improve the feature expression ability of network and adap-
tively update template features. While the latter combines
the information of decision-level and feature-level, which
provides a more reasonable way to balance the two mode
features’ weight ratio. They can be easily embedded in other
trackers. We conduct several experiments on three data sets,
and our tracker achieves state-of-the-art results and keeps
high speed.In the future, we will optimize our network and
design more concise fusion methods to achieve better perfor-
mance. We will also try to use the network for related fields
such as medical image fusion.
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