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Abstract

Many studies utilize dual-pixel (DP) sensor phase char-
acteristics for various applications, such as depth estima-
tion and deblurring. However, since the DP image features
are entirely determined by the camera hardware, DP-depth
paired datasets are very scarce, especially when perform-
ing depth estimation on customized cameras. To overcome
this, studies simulate DP images using ideal optical system
models. However, these simulations often violate real op-
tical propagation laws, leading to poor generalization to
real DP data. To address this, we investigate the domain
gap between simulated and real DP data, and propose so-
lutions using the Simulating DP images from ray tracing
(Sdirt) scheme. The Sdirt generates realistic DP images
via ray tracing and integrates them into the depth estima-
tion training pipeline. Experimental results show that mod-
els trained with Sdirt-simulated images generalize better to
real DP data. The code and collected datasets will be avail-
able on https://github.com/LinYark/Sdirt.

1. Introduction

The DP sensor [15, 29] is designed to split each pixel
into a left and a right sub-pixel, utilizing microlenses and
sub-pixels to achieve phase splitting. This allows captur-
ing a pair of images in one shot, known as DP images,
as shown in Fig. 1(a). DP images can not only be used
to autofocus [7, 11, 31] but also enhance the performance
in applications such as deblurring [4, 17, 41] and depth
estimation [9, 13, 23]. In the field of Depth-from-Dual-
Pixel (DfDP) depth estimation, DP-depth paired datasets
are scarce due to camera hardware limitations. To ad-
dress the scarcity of DP-depth paired datasets, much re-
search [2, 16, 18, 23, 26, 37] has focused on simulating
DP images using RGBD datasets, aiming to provide a more
flexible and accessible data source.

The key to simulating the DP image through RGBD
datasets lies in the DP Point-Spread-Function (PSF). In re-
cent years, many model-based and calibration-based DP
PSF simulators have emerged. Calibration-based simula-

quantingwei, sqgzeng}@hust.edu.cn

Right sub-pixels

(a) Camerabody Right image

DP sensor

LREFLREJLREEL R
L[ [T I

(b) COC simulating

Left PSF Right PSF Left PSF Right PSF

Figure 1. (a) Imaging process of a DP camera. We illustrate the
slight shifts in the left and right DP images caused by phase split-
ting with white dashed lines. (b) Example comparison between
real and COC simulated DP PSF. There exists a significant differ-
ence between the two.

tors [16, 18, 37] spent considerable time calibrating real
cameras to match the DP PSF but faced issues such as in-
terpolation errors from discrete calibration and neglect of
lens and DP sensor parameters, limiting model transferabil-
ity. Model-based simulators [2, 23, 26] used ideal optical
models or aberration analysis models to directly calculate
the DP PSF, thus bypassing the calibration step. However,
these models perform poorly on real DP images due to ig-
noring lens aberration and DP phase splitting characteris-
tics. As shown in Fig. 1(b), the ideal thin lens model’s sim-
ulated Circle-of-Confusion (COC) DP PSF has a significant
domain gap with the real one, affecting depth estimation.

To address the domain gap between real DP images and
DP images simulated by model-based simulators, we pro-
pose the Sdirt scheme. Sdirt consists of a ray-traced DP
PSF simulator and a pixel-wise DP image rendering mod-
ule, which can accurately generate DP images with aberra-
tion and phase characteristics. Specifically, for a fixed focus
lens and DP sensor system with known parameters, we use
ray tracing [35, 39, 40] to calculate the spatially varying DP
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PSF and train a multilayer perceptron (MLP) to predict it.
Subsequently, we convolve the per-pixel DP PSF with the
All-in-Foucs (AiF) image to simulate the DP images cap-
tured by a real camera. After training a DfDP model with
DP images simulated by Sdirt, the model can accurately es-
timate depth using optical aberration and phase information,
which enhances its ability to generalize to real DP images.
We conduct extensive experiments to validate the effec-
tiveness of Sdirt. The experimental results indicate that,
compared to other model-based simulators, the DP PSFs
and DP images generated by Sdirt are closer to real images,
and the DfDP model trained on Sdirt achieves better gener-
alization. In summary, our contributions are four-fold:

* We propose a ray-traced DP PSF simulator that calculates
the spatially varying DP PSF, addressing the domain gap
between simulated and real DP PSF caused by lens aber-
rations and sensor phase splitting.

* We propose a pixel-wise DP image rendering module that
uses an MLP to predict the DP PSF for each pixel, nar-
rowing the gap between simulated and real DP images.

» Experimental results of depth estimation demonstrate that
the DfDP model trained on Sdirt generalizes better to real
DP images.

* We collected a DP-depth paired real test set, with an open
lens structure and fixed focus, for use in subsequent re-
search.

2. Related Work
2.1. DP Datasets

Most professional and mobile cameras have DP sensors,
but only Canon cameras [1, 25, 26] and Google Pixel
phones [9, 34, 43] provide DP data. In the field of
depth estimation, supervised tasks rely on DP-depth paired
datasets [1, 9, 26, 43]. However, when the lens or sensor
is changed, or the focal length and aperture settings are ad-
justed, the point spread function (PSF) is altered, requir-
ing significant time and effort to re-collect DP-depth paired
data. Consequently, many researchers are focusing on sim-
ulating DP-depth paired datasets using RGBD datasets.

2.2. DP PSF simulator

Simulating DP images from RGBD datasets relies on DP
PSF, with recent progress in model-based [16, 18, 37]
and calibration-based [2, 23, 26] DP PSF simulators. In
calibration-based simulators, Xin et al. [37] acquired full-
space DP PSF by sampling discrete points in space and
interpolating, while Li et al. [18] acquired it through size
scaling using the COC model. Furthermore, Li et al. [16]
generated DP PSF through a U-Net network, which requires
a large amount of DP-depth paired data. Calibration-based
simulators are time-consuming and prone to interpolation
and scaling errors, while model-based simulators circum-

vent these issues. Pan et al. [23] simplified the optical sys-
tem as an ideal thin lens and used a symmetrically divided
rectangular aperture to calculate DP PSF. Punnappurath et
al. [26] fitted DP PSF as the left-right flip symmetric ker-
nel depletion shape. Abuolaim er al. [2] used aberration
analysis models to calculate DP PSF, but the resulting DP
PSF remained symmetric. These studies oversimplify opti-
cal propagation, neglecting aberrations and phase splitting,
causing a large gap between simulated and real DP data.

2.3. Applications driven by DP data

In recent years, DP data-driven applications such as depth
estimation [9, 10, 13, 14, 23, 24, 43], deblurring [3, 4,
17, 27, 38, 41, 42], and refocus [5, 7, 11, 32] have under-
gone rapid development. Additionally, Kang et al. [13] uti-
lized DP data for facial scanning, similar to depth estima-
tion tasks. Wadhwa et al. [34] employed DP data for syn-
thetic shallow depth-of-field imaging, a popular application
in mobile photography recently. Shi er al. [28] integrated
DP hardware with structured diffractive optical elements for
complex image encoding and high-precision multimodal re-
construction. In addition, DP data can also be used for dis-
parity estimation [22, 36], rain [ 18], and reflections [25] re-
moval. It is foreseeable that DP data-driven applications
will continue to emerge in various new fields.

3. Method of Sdirt

Training the DfDP network requires DP images as input. As
shown in Fig. 2(c), the module achieves pixel-wise render-
ing of DP images by convolving the DP PSF corresponding
to each point in the depth map with AiF RGB image. The
DP PSF for each point is obtained through inference using
a pre-trained MLP network. As illustrated in Fig. 2(b), the
offline training process of the MLP network uses ray-traced
DP PSF (Fig. 2(a)) as Ground Truth (GT).

3.1. Ray-traced DP PSF simulator

As shown in Fig. 2(a), lens ray tracing can accurately obtain
the landing point on the sensor surface [8, 35, 39, 40]. We
construct a ray set A containing n rays, with all rays orig-
inating from a spatial object point p. Then, the image of
the aperture stop in the object space of the lens is regarded
as the entrance pupil, and n points are densely sampled on
this entrance pupil plane. The initial direction vector of each
ray in A is set to point from p to the corresponding sampling
point of the entrance pupil sequentially. As A traverses each
surface of the lens, its position and direction strictly follow
the unique optical characteristics of the mirror surface, un-
dergoing precise refraction according to Snell’s law. After a
series of refractions through the lens, A finally lands on the
sensor plane. We denote A’s landing point on the sensor as
O and its ray direction as D.
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Figure 2. Simulating dual pixel images from ray tracing pipeline.

(a) Ray-traced DP PSF simulator. Calculates spatially varying

DP PSF for lens and DP sensor through ray tracing. (b) DP PSF prediction network. Trains an MLP network to predict DP PSF, using
ray-traced DP PSF as ground truth. (c) Pixel-wise DP image rendering module. The network predicts the DP PSFs for all points in the
depth map (red pass). Then, the DP PSF is convolved with the AiF RGB image to render the simulated DP image (blue pass).

DP sensor ray tracing is limited by camera manufactur-
ers’ non-disclosure of microlens and sub-pixel structure.
As a result, we simplify the DP composite pixel structure
(Fig. 3(a)) based on past research [15, 29]. We model the
microlens as a thin lens with radius 7 and focal length f, set-
ting h for distance between the sub-pixel and the microlens,
w for sub-pixel width, and ps for DP composite pixel size.

The DP PSF can be obtained by separately calculating
the cumulative integration of rays for each sub-pixel. We
analyze which sub-pixel the kth ray Ay in the ray set A
ultimately enters. Through lens ray tracing, we know the
landing point O (xk, yk, zx) and direction Dy (., Y}, 21,)
of the kth ray Ay on the sensor surface. Based on the land-
ing point Oy, we can easily calculate that Ay, lies within the
DP composite pixel (i, j), having surface center coordinates
(24, y:). For O, the situations differ depending on whether
it is within or outside the microlens:

When O, is within the microlens, as shown in Fig. 3(b),
Ay, is refracted by the microlens and then enters a sub-pixel.
According to geometric optics theory, Ay, and the principal
ray incident on the thin lens at the same angle converge on
the focal plane of the thin lens. We only need to focus on a
few boundary lines x 1,1, 1, £R1 to determine which sub-
pixel Ay currently enters. If z, is in the interval [z 11, Z pr1],
it enters the left sub-pixel; if in the interval [z, 2 R1], it
enters the right sub-pixel; otherwise, it is considered a miss-

ing ray. The calculation methods for the boundary lines are
as follows:
21 =2, +w— (f xtan® —w) « h/(f — h)
xy1 =x; — (f xtan@) x h/(f — h) (1)
Tr1 =x; —w — (f *tan@ +w) « h/(f — h)
Where tan 6 is the tangent angle at which Ay, landing on the
sensor surface, equivalent to x} /2.
When Oy, is outside the microlens, as shown in Fig. 3(c),
Ay, enters the sub-pixel directly without refraction. Sim-
ilarly, we only need to focus on a few boundary lines
ZTr2,Tpe, TR to determine which sub-pixel A currently
enters:
Tro =x; +w — h*xtanf
T2 =%; — h *tanf 2)
TRy =T; —w — h*tanf
The left PSF PSFT, can be calculated by integrating the
set of rays A emitted from point p over all left sub-pixels:

PSFL(i,§) = Y Ak % 0113, ) 3)
k=1
where 0y, 1 (7, ) represents the energy distribution of ray Ay,

in the left sub-pixel at DP composite pixel (i, 7). The ray
energy distribution is assumed to be a unit impulse, which
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Figure 3. (a) DP composite pixel structure. The left side is a right
view, and the right side is a front perspective view. (b) On hitting
the microlens, the kth ray lands on left/right sub-pixel in red/blue
interval, else missed. (c) Without hitting the microlens, the kth ray
lands on left/right sub-pixel in red/blue interval, else missed.

equals zero unless it eventually enters the left sub-pixel of
DP composite pixel (7, j). By following the same calcula-
tion steps as for PSFr,, PSFR can also be computed.

3.2. Pixel-wise DP image rendering module

As shown in Fig. 2(b), we reduce computational costs of
ray-traced DP PSF by training an MLP network to predict
it, inspired by [33, 39]. The network input is the normal-
ized coordinate p within the camera’s valid imaging region
(Fig. 4(a)), which is a frustum defined by field of view, sen-
sor size, and the set minimum and maximum depths. We
normalize the (x,y) coordinates to [—1, 1]. After fixing the
focus distance, the kernel size ks of the DP PSF is set to
a size such that the DP PSF for any point within the valid
imaging region can be fully displayed. Finally, we config-
ure the network structure with 5 hidden layers, each con-
taining 512 neurons, and an output layer with 2 * ks? neu-
rons. We use the L2 function as the loss:

Loss = Ly(PSFy, PSFL) 4+ Ly(PSFgr, PSFR) (4)

During training, we use ray-traced DP PSFs as GT and ap-
ply max normalization to avoid challenging samples. Dur-
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Figure 4. (a) The valid imaging region is a frustum, and we nor-
malize the (x,y) coordinates to [—1,1]. (b) The DfDP model
takes DP image as input to predict the detph map. (c) During cost
volume generation in [6], we stack original disparity (green ar-
rows) and add reverse disparity (blue arrows), with dmax as max
displacement.

ing inference, we apply sum normalization to the predicted
DP PSFs to mimic the vignetting correction in the camera
image signal processor.

Due to the lack of shift-invariance of DP PSF, we per-
form local convolution of each pixel’s DP PSF with the
AiF image to simulate the DP image captured by a camera.
The RGBD dataset [21, 30] provides the paired RGB image
Irap and depth map Ip. As shown in Fig. 2(c), we treat
each pixel in I as a spatial object point and use the trained
MLP network to predict its DP PSF. Using Ir;p as the AiF
image, we perform pixel-wise local convolution [39] to ren-
der DP image containing aberration and phase information.

4. DfDP Model Based on Sdirt

As shown in Fig. 4(b), the input of the DfDP model is pro-
vided by the pixel-wise DP image rendering module of the
Sdirt in real-time. In each training iteration, Sdirt feeds the
DfDP model with simulated DP images of shape (B, C, H,
W). Here, B is the batch size, C is the number channels, and
H and W are the DP image height and width. The model
outputs a predicted depth map of shape (B, 1, H, W). We
use the L1 function as the loss:

L=L(Ip.Ip) )

We select [6] as the DfDP model and make reasonable ad-
justments to its cost volume step to accommodate the DP
data. In binocular images, disparity formed by points at dif-
ferent depths is always in the same direction, thus the cost
volume generation process in [6] is also unidirectional, as
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Figure 5. DP PSF simulator representation result. Evaluate the real and simulated (ours, COC, L2R [2], Modeling [26] and DDDNet [23]
) F/1.8 DP PSFs at two depths (0.5m, 1.5m) and three different positions. As spatial object point p moves further from the optical axis, the
real PSF and PSFr become more asymmetric, and aberrations increase. Their simulators neglect aberrations and DP phase splitting,
causing a large gap between simulated and real DP PSF. Only our ray-traced simulator predicts realistic results at all depths and positions.

shown by the green connecting arrows Fig. 4(c). However,
in DP images, disparity formed by object points before and
after the focus distance is opposite in direction. Therefore,
we add blue connecting arrows to extend the cost volume
generation process, in order to enhance the DfDP model’s
ability to capture reverse disparity.

5. Sdirt Representation Result

5.1. Implementation details

The Sdirt scheme employs a Canon RFSOmm lens and a R6
Mark II camerabody as the our real camera. The simulated
DP sensor has dimensions of 24mm x 36mm and a reso-
lution of 512 x 768. We set the focus distance of both the
simulated and real cameras to 1 meter, the valid imaging
range to 0.5 to 20 meters, the F-number to F/4, and the ray
set A to containing 4096 rays. When training the MLP, the
kernel size ks to 21 to fully display the DP PSF of any point
within the valid imaging region. We train the network for
100,000 iterations, selecting 128 random points within the
valid imaging region during each iteration. We conducted
our experiments on a 12700K CPU and a 3090 GPU.
Following [39], we assume chromatic aberration is well
corrected compared to other aberrations and defocus effects,
allowing us to use a 550 nm wavelength to reduce ray trac-
ing costs. For details on obtaining the structure of the DP

composite pixel, please refer to the Supplementary.

5.2. Comparison methods

For comparison, we select all existing model-based DP PSF
simulators: Modeling, L2R [2], DDDNet [23], and added
a COC simulator. Although [24] is a more recent work,
its simulator fully reuses DDDNet [23], so we do not in-
clude it for comparison. Calibration-based simulators and
constraint-training methods are data-driven and require real
DP-depth paired data, making them fundamentally different
from model-based simulators, so no comparison is made.
We directly used the source code of these DP PSF simula-
tors [2, 26], and replicated the simulator [23] that only pro-
vided executable files. To ensure fairness, we set the focus
distance, F-number, and sensor size in their simulator to be
consistent with ours.

5.3. Evaluation on DP PSF simulator

To facilitate the observation of aberration and phase infor-
mation, we temporarily set the F-numbers of both the sim-
ulated and real cameras to F/1.8. We capture a screen dis-
playing a bright spot to obtain the real DP PSF.

As shown in Fig. 5, we evaluate the DP PSF (PSF7,
on left, PSFR on right) of spatial object points p at vari-
ous depths and positions within the valid imaging region.
Observing the real DP PSFs, it can be found that defocus
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Figure 6. Qualitative results of simulated DP images. Evaluate the similarity between simulated (ours, COC, L2R [2], Modeling [26],
and DDDNet [23]) and real F/4 defocused left DP images at two depths (0.5m and 2m). Compared to real F/4 defocused images, images
simulated by other methods exhibit varying sizes of patterns, incomplete shapes, and texture shifts in different directions before and after
the focus distance (1m). Our scheme produces the most realistic simulated images.

(focus distance is 1m) causes a significant phase difference
between the real PSFy, and PSFR, and the phase differ-
ence at depths of 0.5m and 1.5m is opposite. When p is
on the optical axis, all other simulators fail to provide accu-
rate DP PSF results close to reality. Farther from the optical
axis, real PSFy, and PSFg become asymmetric, with less
significant phase differences and more off-axis aberrations.
The differences between DP PSFs provided by other sim-
ulators and real DP-PSFs become more apparent. In con-
trast, our ray-traced simulator predicts accurate results at
all depths and positions.

We present quantitative results in Tab. 1. Specifically, we
choose the Normalized Squared Difference (NSD) method
and the Normalized Cross-Correlation (NCC) method from
OpenCV to evaluate the error and similarity between the
real and simulated DP PSFs. We sampled 50 DP PSFs
at 0.5m and 1.5m within the valid imaging region. Since
the DP PSF is rotationally symmetric around the optical
axis, we performed uniform sampling in the first quadrant.
Our method achieves the highest similarity (0.915 NCC)
and lowest error (0.133 NSD), demonstrating that we have
addressed the domain gap between simulated and real DP
PSFs caused by lens aberrations and sensor phase splitting.

In subsequent experiments, the F-number will be ad-
justed back to F/4 due to the large blur kernel size caused by

Table 1. Quantitative results of DP PSF simulators. The NCC
and NSD between the simulated and real DP PSFs at 50 points
were evaluated. Our method achieved the best similarity and the
lowest error.

Method Ours COC L2R[2] Modeling [26] DDDNet [23]

NCCT 0915 0.672  0.638 0.707 0.589
NSD|  0.133 0448 0523 0.423 0.625

defocus at F/1.8, which resulted in GPU memory shortages.

5.4. Evaluation on simulated DP image

When comparing simulated and real DP images, to explore
the degradation of simulated DP images caused by defocus
effects at different depths, we captured richly textured pla-
nar images from 0.5m to infinity, perpendicular to the cam-
era’s optical axis, with denser sampling at shallower depths
of field. This resulted in 56 scenes with varying depths, in-
cluding 11 with infinite depth. For each scene, real DP im-
ages were captured at F/4 and F/20. The F/20 image served
as the AiF RGB image, replicating its capture-time depth
information into the depth map. Then, we input the F/20
RGB-depth paired images into DP simulators to obtain the
simulated F/4 defocused DP image.

As shown in Fig. 6, we compare the qualitative analysis
results of the defocused left DP images at depths of 0.5m
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Figure 7. Quantitative results of simulated DP images. Eval-
uate the similarity of 56 real and simulated (ours, COC, L2R [2],
Modeling [26] and DDDNet [23]) planar scene F/4 DP images at
different depths using PSNR (1) and SSIM (1) metrics. As the
depth of simulated images deviates further from the focus distance
(1m), the less realistic other methods become, whereas our scheme
maintains the highest accuracy across all depths.

and 2m. Due to errors in simulating the DP PSF, other
methods result in simulated images with textures shifted to
the right at a depth of 0.5m and to the left at a depth of
2m, compared to the real left DP image. Moreover, other
methods show different image texture sizes and incomplete
shapes. However, the DP images simulated by our Sdirt
method show minimal deviation in image textures.

As shown in Fig. 7, which presents quantitative analysis
results for all scenes, we assess the similarity between simu-
lated and real images using PSNR and SSIM metrics. As the
simulated image’s depth moves further away from the focus
distance (1m), the neglect of aberrations and phase split-
ting in other methods leads to a more significant decrease
in their metrics. In contrast, our Sdirt method achieves the
best results at all depths, with average PSNR/SSIM values
of 37.1982/0.9845. These values indicate that our simulated
DP images are very realistic.

6. DfDP Estimation Results

6.1. Implementation details

To train the DfDP model, we simulate F/4 DP images using
the Sdirt based on RGBD datasets [21, 30] . NYU Depth
dataset [30] is parsed by [12] and contains 50,688 indoor
scenes. We use AdamW optimizer [19] and CosineAnneal-
ing scheduler [20] with an initial learning rate of 1 x 1074,
The training batch size is 4, and we train for 50 epochs.
For each epoch, 2000 DP-depth paired data are randomly
selected for training. After training, we directly evaluate
the model’s generalization on the real-world test set with-
out any fine-tuning.

6.2. A new test set DP119

Compared to previous simulation methods, Sdirt requires
more physical priors. As shown in Tab. 2, there is no public
dataset that meets the following conditions: 1. Real DP-
depth paired data for simulating DP images. 2. Known
lens structure for ray tracing. 3. A fixed focus distance,
as changing it alters the DP PSF of the same object point.

Therefore, we collected the DP119 dataset, which consists
of 45 planar scenes, 44 box scenes, and 30 casual scenes,
totaling 119 scenes.

Table 2. Summary of existing DP datasets.

DPDD L2R DPNet DPSK DDDNet Modeling DP119

[1] [2] [9] [16] [23] [26] Ours
Real captured v X v v X v v
Paired depth X v v v v X v
Lens structure v - X v - X v
Fixed focus dist. v/ X X - X v

The casual scenes represent common scenarios, suitable
for evaluating the robustness of simulation models. The
planar and box scenes are richly textured and do not con-
tain textureless areas, which helps the model utilize aberra-
tion and phase difference cues for depth estimation. Tex-
tureless areas, even when defocused, do not introduce any
aberrations or phase differences, making it difficult to esti-
mate depth and interfering with the evaluation. Therefore,
planar and box scenes are ideal for assessing whether the
model addresses the domain gap between simulated and real
DP images. Real DP images are captured by the Canon
RF50mm lens with a R6 Mark II at F/4 and 1m focus. GT
depth maps for planar scenes are created by the depths at
the capture time, while those for box and casual scenes are
obtained from LiDAR scans. For more information about
the DP119 test set, please refer to the Supplementary.

6.3. Evaluation

We present qualitative and quantitative results for the
DfDP model trained by COC, L2R [2], Modeling [26],
DDDNet [23] and our Sdirt. We deploy their DFDP model
with their DP PSF simulator source code, and all methods
use the same depth estimation network structure as ours for
a fair comparison.

Figure 8 shows the depth estimation results for four ca-
sual scenes, with a color bar in meters added to decorate the
images. It can be seen that although other methods provide
relative positional information in the center region, they fail
to correctly estimate relative positional relationships in the
edge regions, and both the center and edge regions have
large absolute positional errors. This is because the DP
PSFs predicted by these methods exhibit phase symmetry
and shift-invariance, while real DP PSFs exhibit significant
phase asymmetry and aberrations (which do not have shift-
invariance), causing their methods to deviate from the real
DP PSF characteristics, resulting in large errors, especially
in the edge regions where the errors are most severe. The
results of L2R [2] and Modeling [26] are similar because
the peak positions of their DP PSFs are quite close. In con-
trast, our method provides accurate relative positional infor-
mation across the entire image area with minimal absolute
positional errors, as our DP PSF is highly consistent with
the real DP PSF in both the center and edge regions.
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Figure 8. Qualitative results of depth estimation. Evaluate DfDP models by with COC, L2R [2], Modeling [26], DDDNet [23] and our
Sdirt at four casual scenes. Each result image is decorated with a color bar in meters. Their depth estimation results show partial accuracy
in relative positional relationships but large absolute positional errors. Our depth estimation results, however, demonstrate accurate in both
relative and absolute positions with minimal errors. (Best viewed in colour and enlarge on screen.)

Table 3. Quantitative results of depth estimation. The DfDP
model trained based on the Sdirt scheme achieves the best perfor-
mance across most scenarios and evaluation metrics.

Scene  Method MAE| MSE| Absr] Sqrl  Acc-11T  Acc-2t
Ours 0.0845 0.0109 0.0871 0.0095 0.9849  0.9997
cocC 0.2085 0.1001 0.1801 0.0659 0.6670  0.8990

planar L2R [2] 0.2418 0.1271 0.2112 0.0841 0.6319 0.8536

Modeling [26]  0.2284 0.1142 0.2004 0.0766 0.6496  0.8725
DDDNet [23]  0.2583 0.1485 0.2191 0.0958 0.5648 0.8089

Ours 0.1197 0.0339 0.0906 0.0231 0.9474  0.9812
COoC 0.3375 0.1804 0.2442 0.1116 0.4412  0.8277
box L2R [2] 0.3866 0.2284 0.2803 0.1412 03651 0.7156

Modeling [26]  0.3655 0.2055 0.2660 0.1278 0.3907  0.7758
DDDNet [23] 04177 0.2676 0.2975 0.1636 0.3456  0.6274

Ours 0.2702 0.2294 0.4632 0.7241 0.8236  0.9314
COC 0.7925 1.8579 0.5461 0.6821 0.3318 0.6103
casual L2R[2] 0.8170 1.7487 0.5597 0.6719 0.2760  0.5315

Modeling [26] 0.7934 1.7256 0.5510 0.6655 0.2978  0.5732
DDDNet [23]  0.8931 2.0624 0.5752 0.7135 0.2481  0.4685

We evaluate all models on the DP119 test set using the
following metrics to assess the quantitative results: Mean
Absolute Error (MAE), Mean Squared Error (MSE), Abso-
lute Relative Error (Abs.r.), Squared Relative Error (Sq.r.),
accuracy with 6 < 1.25 (Acc-1) and accuracy with § <
1.252 (Acc-2). Since the planar and box scenes are richly
textured and do not have interference from textureless ar-
eas, the simulation models can rely on abundant aberration
and phase difference cues for depth estimation. As shown
in Tab. 3, in the simplest planar scene, our model achieves
the best results across all metrics (0.9849 Acc-1). In the
box scenes, all models experience a performance drop com-
pared to the planar scenes, but we still achieve the optimal
metrics (0.9474 Acc-1). These results demonstrate that our
model is highly realistic and has effectively addressed the
domain gap between simulated and real DP images. Fur-
thermore, we test the robustness of all models on the casual

scenes. Due to the textureless areas in the casual scenes, the
performance of all models significantly degrades. However,
our model still achieves the best metrics (0.8236 Acc-1), far
surpassing the second-best model (0.3318 Acc-1). This fur-
ther demonstrates that our model is the most realistic and
has the best generalization performance. For more sample
results from the DP119 test set, please refer to the Supple-
mentary.

7. Conclusion and Discussion

Simulated DP images can address the scarcity of DP-depth
paired data but face a domain gap between simulated and
real DP data. In this work, we propose Sdirt to bridge
this domain gap. Specifically, we calculate the DP PSF for
points in object space using ray tracing, and leverage a net-
work to predict it. Then, we render DP images based on
the predicted DP-PSFs. Experimental results show that the
proposed Sdirt scheme can simulate more realistic DP data.
Moreover, depth estimation models trained based on Sdirt
generalize better on real DP images.

We believe that the Sdirt scheme is not limited to DfDP
tasks, it can provide extra depth information for any task
with known optical imaging system parameters, promising
significant applications in scenarios such as smartphones,
automobiles, and microscopes in the future. However,
Sdirt is only applicable to cameras equipped with a fixed-
focus lens (the structure must be open) and a DP sensor (DP
images must be available). Currently, only Canon (5D4, R
series) meets these requirements. To further expand the ap-
plication of Sdirt, more camera and smartphone manufac-
turers need to make these data accessible.
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Simulating Dual-Pixel Images From Ray Tracing For Depth Estimation

Supplementary Material

8. Sdirt Details

8.1. Structure parameters of DP composite pixels

We select the Canon RF50mm F/1.8 lens and Canon R6
Mark II camera body as our reference lens and DP sensor.
Since the lens parameters are known, with detailed lens data
presented in Tab. 4 and the 2D lens structure with ray paths
illustrated in Fig. 9(a), it is feasible to perform ray tracing
on the lens. However, performing ray tracing on the DP
sensor is limited by camera manufacturer’s nondisclosure
of microlens and sub-pixel structure parameters. Therefore,
as described in Sec. 3.1 (Ray-traced DP PSF simulator) and
Fig. 3(a) (DP composite pixel structure) of the main paper,
we simplify the DP composite pixel structure by modeling
the microlens as a thin lens with a radius of 7 and a focal
length of f, set h to the distance between the sub-pixel and
the microlens, set w to the sub-pixel width, and set ps to the
size of the DP composite pixel.

We assign a set of possible values to each structure pa-
rameter of the DP composite pixel and identify the optimal
parameter combination through grid searching across these
parameters. Instead of conducting search experiments di-
rectly on the reference lens, we replace it with the Canon
RF35mm F/1.8 lens to probe the structure parameters, en-
suring isolation between the reference lens and the sensor.
Detailed lens data for the Canon RF35mm F/1.8 lens are
provided in Tab. 5, and its 2D lens structure with ray paths
is illustrated in Fig. 9(b). In the valid imaging region (Fig.
4(a) in the main paper), we select 5 object points at different
positions and capture real DP PSFs through the camera. By
evaluating the error and similarity between the real DP PSF
and the set of DP PSFs simulated with all structure param-
eters, we determine an optimal parameter combination:

h =0.78xps
= 1.44 % ps
f p ©)
w = 0.60 % ps
r  =0.50 % ps

Specifically, we choose the Normalized Squared Differ-
ence (NSD) method and the Normalized Cross-Correlation
(NCC) method from OpenCV to evaluate the error and sim-
ilarity between the real and simulated DP PSFs. During the
search experiments, we set the F-number to F/4.0, set the
DP PSF kernel size to 35, and set the focal distance to in-
finity. As shown in Fig. 10, we present the results of the er-
ror and similarity matching. For ease of presentation, when
displaying the matching results for any one parameter, we
fix the other parameters at their optimal values according to

Eq. (6).

To demonstrate the similarity between real and simulated
DP PSFs under the optimal combination of structure param-
eters, we conduct a qualitative analysis while keeping the
lens, F-number, kernel size, and focal distance unchanged
from the search experiments. As shown in Fig. 12, we se-
lect five points at equal intervals within the valid imaging re-
gion, with only their x-coordinates increasing sequentially.
Additionally, to visually compare changes in pixel values, a
line plot of pixel distribution along the rows is also included
in Fig. 12. Observing the actual DP PSF, we notice that as
the object point p moves farther from the optical axis, the
real PSF, and PSFpr become more asymmetrical. This
observation aligns with the experimental results presented
in Sec. 5.3 (Evaluation on DP PSF simulator) of the main
paper. When comparing the ray-traced and real DP PSF, we
find that the ray-traced DP PSF is not only highly realistic in
morphology but also closely matches the real data in pixel
values.

8.2. Local DP PSF convolution

Existing methods generally use the same PSF kernel to con-
volve the entire image. Yang et al. [39] provides a local
convolution operation function based on PyTorch, enabling
the use of different PSF kernels for each pixel. However, in
our experiments, we use different DP PSF kernels for each
pixel. We corrected the kernel flipping error in his function
and provided an implementation for using different DP PSF
kernels for each pixel, as follows:

def local_dp_psf_render (input, dp_psft,
kernel_size=21):
"nn Render DP image with local DP PSF.

erent DP PSF kernel for

different

lurred (
! P PSE
P PSFs
Re
) (N, 2
b,c,h,w = input.shape
pad = int ((kernel_size-1)/2)
# 1. pad the input with replicated values

inp_pad = torch.nn.functional.pad (input, pad
= (pad, pad, pad, pad), mode="replicate’)

# 2. Create a Tensor of varying DP PSF




Table 4. Canon RF50mm F/1.8 lens data. The reference lens used in the paper.

Surface Radius (mm) Thickness (mm) Material (n/V) Diameter (mm) Conic ay ag ag ao an
1 (Sphere) 28.621 4.20 1.83481/42.7 29.99 0 0 0 0 0 0
2 (Sphere) 68.136 0.18 28.48 0 0 0 0 0 0
3 (Sphere) 17.772 6.70 1.79952/42.2 23.90 0 0 0 0 0 0
4 (Sphere) 59.525 1.10 1.80518/25.4 20.78 0 0 0 0 0 0
5 (Sphere) 11.427 5.27 16.78 0 0 0 0 0 0
6 (Aper) 6.20 16.24 0 0 0 0 0 0
7 (Sphere) -16.726 0.90 1.67270/32.1 14.95 0 0 0 0 0 0
8 (Sphere) -29.829 0.83 15.46 0 0 0 0 0 0
9 (ASphere) -25.000 2.95 1.53110/55.9 15.52 0 -4.12032e-05 -2.90015e-07 -4.67119e-09  7.90646e-11  -9.28470e-13
10 (ASphere) ~ -18.373 0.98 18.14 0 -241619e-05 -3.29146e-07 1.91098e-10 -9.28593e-13  -2.29193e-13
11 (Sphere) 280.004 4.60 1.73400/51.5 24.43 0 0 0 0 0 0
12 (Sphere) -34.002 25.67 25.71 0 0 0 0 0 0
Sensor 43.27
(a) (b)
N
\ /
7 1 X
s — —
7/
2 P
/
\4 L/
Figure 9. The 2D lens structure with ray paths. (a) Canon RF50mm F/1.8 lens. (b) Canon RF35mm F/1.8 lens.
kernels = dp_psf.reshape (-1, 2, kernel_size, We present qualitative and quantitative comparison re-

kernel_size)
kernels_flip = torch.flip(kernels, [-2, -1])
kernels_rgb = torch.stack (cx[kernels_flip],
2)
Unfold input
inp_unf = torch.nn.functional.unfold (inp_pad,
(kernel_size,kernel_size))
Multiply kernel with unfolded

# 3.

H=

4.

x1 = inp_unf.view(b,c,-1,h*w)

x2_1 = kernels_rgb[:,0,...].view(b, hxw, c,
-1) .permute (0, 2, 3, 1)

x2_r = kernels_rgb[:,1,...].view(b, hxw, c,
-1) .permute (0, 2, 3, 1)

y_1 = (x1%x2_1).sum(2)

y_r = (x1%x2_r).sum(2)

render_1 = torch.nn.functional.fold(y_1, (h,w)
,(1,1))

render_r = torch.nn.functional.fold(y_r, (h,w)
,(1,1))

return torch.cat ([render_1,render_r], dim=1)

8.3. DP PSF predict network

During the training of the DP PSF prediction network, as
described in Sec. 5.1 (Implementation details) of the main
paper, we set the aperture to F/4, ks to 21, and trained for
100,000 iterations. After training, we evaluated the fitting
quality of the DP PSF network.

sults between our MLP network and recent work [33, 39],
As shown in Fig. 12, we evaluate DP PSF at three depths
and positions, using ray-traced DP PSF as GT. Their results
show significant errors compared to ray-traced ones at large
PSF radii. This is due to their training scheme using sum
normalization for GT, which is effective for small PSF radii
but becomes less accurate for larger ones. In contrast, our
network, also using only MLP, can predict accurate results
at all depths and positions, even at large PSF radii. The
only difference is that we adopt max normalization for GT
DP PSF during training and mimic vignetting correction to
scale predicted DP PSF when inference. Compared to the
DP PSF obtained through ray tracing, the results output by
the MLP network are smoother. This is because the num-
ber of rays sampled in ray tracing is limited by memory and
computation time, with only 4096 rays set.

We present quantitative results in Tab. 6. Specifically, we
compare L1 and L2 errors for 50 different depths and posi-
tions, as well as the time cost for predicting a DP PSF map
for all pixels (a total of 512 x 768) in the depth map. Our
network outperforms those developed by Yang et al. [39]
and Tseng et al. [33] in accuracy, and its low time cost en-
ables high-speed image rendering. In contrast, the network
proposed by Tseng et al. [33] incurs high time costs due to



Table 5. Canon RF35mm F/1.8 lens data. The lens used in detecting DP composite pixel structure parameters.

Surface Radius (mm) Thickness (mm) Material (n/V) Diameter (mm) Conic ay ag as alo a2
1 (Sphere) 800.000 1.00 1.80810/22.8 27.80 0 0 0 0 0 0
2 (Sphere) 33.296 1.92 25.64 0 0 0 0 0 0
3 (Sphere) 103.801 3.11 2.00100/29.1 25.57 0 0 0 0 0 0
4 (Sphere) -86.901 4.09 25.07 0 0 0 0 0 0
5 (Sphere) -47.674 1.30 1.51742/52.4 20.44 0 0 0 0 0 0
6 (Sphere) 17.367 5.73 1.90043/37.4 21.60 0 0 0 0 0 0
7 (Sphere) 777.674 3.72 21.26 0 0 0 0 0 0
8 (Aper) 3.62 20.16 0 0 0 0 0 0
9 (Sphere) 64.497 2.12 1.69680/55.5 19.04 0 0 0 0 0 0
10 (Sphere) -262.934 3.56 18.69 0 0 0 0 0 0
11 (ASphere) -35.963 1.30 1.58313/59.4 17.10 0 -4.61997e-05 -9.22837e-08 -4.60687e-10  1.65555e-13 0
12 (Sphere) -93.550 0.13 17.19 0 0 0 0 0 0
13 (Sphere) -84.988 6.26 1.88300/40.8 17.29 0 0 0 0 0 0
14 (Sphere) -12.701 1.00 1.85478/24.8 18.97 0 0 0 0 0 0
15 (Sphere) 135.000 5.27 22.77 0 0 0 0 0 0
16 (Sphere) 800.000 7.35 1.90043/37.4 31.72 0 0 0 0 0 0
17 (Sphere) -28.799 0.95 33.14 0 0 0 0 0 0
18 (Sphere) -109.518 2.86 1.69680/55.5 34.06 0 0 0 0 0 0
19 (Sphere) -53.092 11.79 34.38 0 1] 0 0 0 0
20 (Sphere) -29.766 1.70 1.59270/35.3 33.78 0 0 0 0 0 0
21 (Sphere) -114.300 11.66 36.27 0 0 0 0 0 0
Sensor 43.27
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Figure 10. Error and similarity matching results of structure parameters. In the matching results, the horizontal axis represents
structural parameters (multiples of pixel size). The left vertical axis represents the NSD matching result between real and simulated DP
PSFs, while the right vertical axis represents the NCC matching result. To facilitate display, when showing the matching result for any one
parameter, we fix the other parameters at their optimal values according to to Eq. (6). Moreover, we use white dashed lines to mark the
optimal value for each parameter.
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Figure 11. Qualitative analysis results of DP PSF for real and ray tracing. We select 5 points within the valid imaging region, and only
their x-coordinates increased sequentially, corresponding to (a) - (¢). We provide not only the comparison results of real and ray-traced
DP PSF (PSFTy, on the left, PSFr on the right) for these 5 points. We also present the pixel distribution curves for the central row. As
the object point p moves farther away from the optical axis, the real PSFT, and PSFr become more asymmetric. Our simulated DP PSF,

obtained through ray tracing, aligns well with the real DP PSF.

Table 6. Quantitative results of DP PSF predict networks.

Method Llerror] L2error| Time(s) |
Ray-traced - - 801.544
Ours 6.887e-5  6.830e-8  0.395
Yang et al. [39]  1.487e-4 1.381e-7 0.395
Tseng et al. [33] 1.124e-4 7.685e-7 43.96

its inclusion of convolutional layers.

Overall, rendering a DP image using a DP PSF map is
very fast (with a fixed cost of 0.2 seconds). However, gener-
ating these DP PSFs through ray tracing is time-consuming
(801.544 seconds). We use MLP to save time, achieving
high speed (0.395 seconds), which enables real-time ren-
dering of DP images for DP data-driven tasks during each
iteration.

9. Depth-from-Dual-Pixel model details
9.1. Adjustment of cost volume

In the field of Depth-from-Dual-Pixel (DfDP), we do not
pursue the optimal DfDP network structure. Instead, we
select [6] as the DfFDP model and make reasonable adjust-
ments to its cost volume step to accommodate the DP data.

Existing binocular disparity matching algorithms typi-
cally only consider a single-direction misalignment to stack
left and right image features, forming a cost volume. This is
because in binocular images, the disparity formed by points
at any depth is always in the same direction. However, in
DP images, the disparity direction formed by object points
before and after the focal distance is opposite. Therefore, as
shown in Fig. 4(c) (main paper), we add reverse disparity
while stacking the original disparity. Our implementation is
as follows:

def get_dp_cost_volume(x, y, d_max=20):
""" Get DP image cost volume
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Figure 12. DP PSF predict network representation result. Eval-
uate the ray-traced and network-predicted (ours, Yang et al. [39],
and Tseng et al. [33]) F/4 DP PSFs at three depths (0.5m, 1.5m,
20m) and positions. For small DP PSF radii, all network predic-
tions closely match ray-traced results. For larger radii, the pre-
dicted results by [33, 39] show significant deviations, attributed to
differences in normalization schemes with ours during training.
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B, C, H, W= x.size()

cost = torch.zeros (B, Cx2, d_max, H, W).
type_as (x)

for i in range (d_max) :
d = i-d_max//2

if d < 0:
cost[:, :C, i, :, :d]l=x[: s, , :d]
cost[:, C:, 1, :, :dl=y[:, :, :, —d:]

elif d == 0:
cost[:, :C, i, :, :] = x
cost[:, C:, 1, :, ] =y

if d > 0:
cost[:, :C, i, :, d:]l=x[:, , , d:]
cost[:, C:, 1, , dil=yl:, ’ , :—d]

return cost
9.2. A new test set DP119

We used the Canon RF50mm lens and Canon R6 Mark 11
camera to capture the dataset, setting the aperture to F/4
and focusing at 1 meter. Each scene provides real DP-depth
paired data. Finally, we collected the DP119 dataset, which
includes 45 planar scenes, 44 box scenes, and 30 casual

scenes, totaling 119 scenes.

For the planar scenes, we captured richly textured
posters images from 0.5 meters to 2 meters perpendicular
to the camera’s optical axis, with denser sampling at shal-
lower depths of field. The dataset includes five sets of sam-
ples and nine different distances (0.5m, 0.6m, 0.7m, 0.8m,
0.9m, 1.0m, 1.2m, 1.5m, 2m). Real DP images were cap-
tured at apertures F/4 and F/20, adjusting ISO to match light
intensity. F/20 images were used as AiF images, with their
depth value copied into the depth map. Due to the simple
depth structure of planar scenes, we avoid issues like holes
in LiDAR depth maps or misalignment between depth and
RGB images. These scenes are useful for evaluating both
depth estimation models and the realism of DP simulators.
As shown in Fig. 13(a), we present a sample set of planar
scenes.

For the box scenes, we covered all the boxes and back-
grounds with posters. The boxes were randomly placed
within a range of 0.5m to 2m, and each time we took a shot,
we significantly adjusted the number, texture, and place-
ment of the boxes, deliberately creating situations of over-
lap, tilt, and occlusion. Depth was captured using the Li-
DAR of an iPhone 15 Pro. Both planar and box scenes are
richly textured, aiding the model in utilizing aberration and
phase difference cues for depth estimation. Textureless ar-
eas, even when defocused, do not introduce any aberrations
or phase differences, which would interfere with depth es-
timation. Therefore, planar and box scenes are ideal for
evaluating whether the DP simulator addresses the domain
gap between simulated and real DP images. As shown in
Fig. 13(b), we present samples of box scenes.

For the casual scenes, we directly captured ordinary
real-world scenes, intentionally controlling the depth within
0.5m to 10m, as scenes beyond 10m would yield unreliable
results from the depth sensor. Among the 30 casual scenes,
20 indoor scenes were captured with depth obtained using
a binocular structured-light camera (Orbbec Gemini2). For
the 10 outdoor scenes, since the binocular structured-light
camera performs poorly outdoors, we used the LiDAR of
an iPhone 15 Pro to capture depth. As shown in Fig. 13(c),
we present samples of casual scenes.

9.3. More DfDP results on the DP119 test set

Fig. 14 presents the depth estimation results of various sim-
ulators on different scenes in the DP119 dataset. From pla-
nar scenes 1 and 2, we observe that due to increased aberra-
tions and asymmetric phase differences at the edge regions,
all models, including ours, exhibit significant relative po-
sitional errors in both central and edge regions. However,
our model provides more accurate absolute depth estimates,
whereas other models tend to bias toward the focus distance
(1m). The depth estimation results of L2R [2] and Mod-
eling [26] are similar, as their DP PSF peak positions are
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Figure 13. Examples of scenes in the DP119 dataset. Each depth map is decorated with a color bar in meters. (a) Planar scene samples.
The d is the planar depth value at the time of capture. (b) Box scene samples. (c) Casual scene samples.

spatially close. A similar trend is observed in box scenes
1 and 2, where other models show a strong bias toward the
focal distance (1m) and exhibit large relative positional er-
rors in both central and edge regions. In contrast, our model
maintains superior performance.

In casual scenes 1 and 2, the textures are rich, and the
scenes are simple. In addition to aberration and phase
difference information, the models can also use additional
structural information to predict depth. As a result, the rela-
tive positional errors in the center and edge regions were
alleviated for all models in these two scenes. However,
the absolute depth estimates from other models still show
a clear bias toward the focus distance (Im). Moreover, in
casual scenes 3 and 4, large textureless areas appear, miss-

ing aberration and phase difference cues. Depth estimation
models can only infer the depth of these textureless areas
along structural information, leading to significant relative
positional position errors in textureless regions for all mod-
els.

Overall, our model outperforms others in both relative
and absolute position accuracy. This demonstrates the high
realism of our DP simulator and its ability to bridge the do-
main gap between simulated and real DP images.
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Figure 14. The depth estimation results from different simulators on the DP119 test set. Evaluate DfDP models by with L2R [2],
Modeling [26], DDDNet [23] and our Sdirt on various DP119 dataset scenes. Each result image is decorated with a color bar in meters.
Their depth estimation results show partial accuracy in relative positional relationships but large absolute positional errors. Our depth
estimation results, however, demonstrate accurate in both relative and absolute positions with minimal errors. Furthermore, textureless
areas lead to degradation in all models. (Best viewed in colour and enlarge on screen.)



	Introduction
	Related Work
	DP Datasets
	DP PSF simulator
	Applications driven by DP data

	Method of Sdirt
	Ray-traced DP PSF simulator
	Pixel-wise DP image rendering module

	DfDP Model Based on Sdirt
	Sdirt Representation Result
	Implementation details
	Comparison methods
	Evaluation on DP PSF simulator
	Evaluation on simulated DP image

	DfDP Estimation Results
	Implementation details
	A new test set DP119
	Evaluation

	Conclusion and Discussion
	Sdirt Details
	Structure parameters of DP composite pixels
	Local DP PSF convolution
	DP PSF predict network

	Depth-from-Dual-Pixel model details
	Adjustment of cost volume
	A new test set DP119
	More DfDP results on the DP119 test set


