Supplemental Material for the Manuscript
Simulating Dual-Pixel Images From Ray Tracing For Depth Estimation

Fengchen He, Dayang Zhao, Hao Xu, Tingwei Quan, Shaoqun Zeng
Huazhong University of Science and Technology

{linyark, dayangzhao, xuhao_2003,

S1. Sdirt Details

S1.1. Structural parameters of the DP pixel

We select the Canon RFSOmm F/1.8 lens and Canon R6
Mark II camera body as our real reference lens and DP
sensor in the main paper. Since the reference lens data are
available, with detailed specifications presented in Tab. S|
and the 2D lens layout with ray paths shown in Fig. S1(a),
it is feasible to perform ray tracing on the lens. In prac-
tice, many commercial lens data, including Canon lenses,
are available on open-access websites such as the Optical
Bench, which facilitates optical modeling. However, per-
forming ray tracing on the DP sensor is limited by camera
manufacturers’ nondisclosure of the structural parameters
of the microlens and sub-pixel components within the DP
pixel. Therefore, as described in Sec. 3.1 (Ray-traced DP
PSF simulator) and Fig. 3(a) (DP pixel structure layout) of
the main paper, we simplify the DP pixel structure by mod-
eling the microlens as a thin lens with radius 7 and focal
length f, defining h as the distance between the sub-pixel
and the microlens, w as the sub-pixel width, and ps as the
DP pixel size.

We assign a set of possible values to each structural pa-
rameter of the DP pixel and identify the optimal parameter
combination through grid searching across these parame-
ters. Instead of conducting search experiments directly on
the reference lens, we employ the Canon RF35mm F/1.8 as
an isolation lens to replace the reference lens for probing
DP pixel structural parameters, thereby ensuring isolation
between the reference lens and the sensor. Detailed lens
data for the Canon RF35mm F/1.8 are provided in Tab. S2,
and its 2D lens layout with ray paths is shown in Fig. S1(b).
In the valid imaging region (Fig. 4(b) in the main paper), we
select 5 object points at different positions and capture real
DP PSFs through the employed camera. By evaluating the
error and similarity between the real DP PSFs and the set of
DP PSFs simulated with all DP pixel structural parameters,
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we determine an optimal parameter combination:

h =0.78xps
=144
f * ps s
w = 0.60 % ps
r  =0.50 % ps

Specifically, we choose the normalized squared differ-
ence (NSD) and normalized cross-correlation (NCC) meth-
ods from OpenCV to evaluate the error and similarity be-
tween the real and simulated DP PSFs. During the search
experiments, we set the F-number to F/4.0, set the DP PSF
kernel size to 35, and set the focal distance to infinity. As
shown in Fig. S2, we present the results of the error and sim-
ilarity matching. For ease of presentation, when displaying
the matching results for any one parameter, we fix the other
parameters at their optimal values according to Eq. (S1).

To demonstrate the similarity between real and simu-
lated DP PSFs under the optimal combination of structural
parameters, we conduct a qualitative analysis while keep-
ing the lens, F-number, kernel size, and focal distance un-
changed from the grid search experiments. As shown in
Fig. S3, we select five points evenly spaced within the valid
imaging region, with only their x-coordinates increasing se-
quentially. Additionally, to visually compare changes in
pixel values, a line plot of pixel distribution along the cen-
tral row is also included in each subplot. Observing the
actual DP PSF, we notice that as the object point p moves
farther from the optical axis, the real PSF;, and PSF be-
come more phase asymmetric. This observation aligns with
the experimental results presented in Sec. 5.3 (Evaluation
on simulated DP PSFs) of the main paper. When comparing
the ray-traced and real DP PSFs, we find that the ray-traced
DP PSF is not only highly realistic in morphology but also
closely matches the real data in pixel values.

S1.2. DP PSF capture and linearization

The native resolution of the Canon R6 Mark II is 6000 x
4000 pixels. Due to GPU memory limitations, we reduced
the spatial resolution to 768 x 512. Although this resolution
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Figure S1. The 2D lens layout with ray paths. (a) Canon RF50mm F/1.8 lens. (b) Canon RF35mm F/1.8 lens.

Table S1. Canon RF50mm F/1.8 lens data. The real reference lens used in the main paper.

Surface Radius (mm)  Thickness (mm) Material (n/V) Diameter (mm) Conic ay ag as ao aja

1 (Sphere) 28.621 4.20 1.83481/42.7 29.99 0 0 0 0 0 0

2 (Sphere) 68.136 0.18 28.48 0 0 0 0 0 0

3 (Sphere) 17.772 6.70 1.79952/42.2 23.90 0 0 0 0 0 0

4 (Sphere) 59.525 1.10 1.80518/25.4 20.78 0 0 0 0 0 0

5 (Sphere) 11.427 5.27 16.78 0 0 0 0 0 0

6 (Aper) 6.20 16.24 0 0 0 0 0 0

7 (Sphere) -16.726 0.90 1.67270/32.1 14.95 0 0 0 0 0 0

8 (Sphere) -29.829 0.83 15.46 0 0 0 0 0 0

9 (ASphere) -25.000 2.95 1.53110/55.9 15.52 0 -4.12032e-05  -2.90015e-07 -4.67119¢-09  7.90646e-11  -9.28470e-13
10 (ASphere) -18.373 0.98 18.14 0 -2.41619e-05 -3.29146e-07 1.91098e-10  -9.28593e-13  -2.29193e-13
11 (Sphere) 280.004 4.60 1.73400/51.5 24.43 0 0 0 0 0 0

12 (Sphere) -34.002 25.67 25.71 0 0 0 0 0 0
Sensor 43.27

is far below the original, our experiments on DP PSFs (see
Fig. 5 in the main paper and Fig. S3) demonstrate that aber-
rations and phase differences in defocused regions remain
clearly visible.

Capturing the real DP PSFs is a straightforward pro-
cess. A single white pixel is displayed on an OLED screen
(iPhone 15 Pro, 460 ppi, 55 um pixel size). We capture
the PSFs using a Canon R6 Mark II (6 um pixel size)
equipped with an RF50mm lens at object distances rang-
ing from 0.5 m to 2 m. For the camera’s native resolution
of 6000 x 4000, the Nyquist-limited spatial resolution is ap-
proximately 120 um at 0.5 m and 480 um at 2 m. Given the
subsequent downsampling, capturing a single bright pixel
on the screen is sufficient to ensure the acquisition of the
real PSFs.

The PSFs generated by optical simulations represent lin-
ear light intensity distributions, similar to those in the cam-
era’s RAW domain. To our knowledge, Canon’s RAW-
domain dual-pixel images are not publicly available, and
currently only RGB-domain dual-pixel images can be ob-
tained. Therefore, the PSFs captured by the camera are
pixel value distributions in the RGB domain, transformed
from RAW-domain light intensities by the image signal pro-
cessing (ISP) pipeline. This pipeline involves non-linear

and non-invertible operations such as gamma correction and
contrast enhancement. Although modern ISP pipelines are
highly complex, radiometric calibration remains a common
and practical approach to approximately linearize RGB data
and recover the underlying light intensity distributions in
the RAW domain. As shown in Fig. S4, our linear calibra-
tion method consists of: 1. Capture a static scene under
varying exposure times; 2. Use the image captured with
the shortest exposure time (pixel values within [0, 35]) as
a linear reference, scaling it according to exposure time ra-
tios to obtain target values for the other images; 3. Fit the
original pixel values of other images to these targets. We
adopt a piecewise weighted fitting approach, and the fitted
functions are released with our code.

S1.3. Local DP PSF convolution

Existing methods generally use the same PSF kernel to con-
volve the entire image. Yang et al. [6] provides a local con-
volution operation function based on PyTorch, enabling the
use of different PSF kernels for each pixel. However, in
our experiments, we use different DP PSF kernels for each
pixel. We corrected the kernel flipping error in his function
and provided an implementation for using different DP PSF
kernels for each pixel, as follows:



Table S2. Canon RF35mm F/1.8 lens data. The real isolation lens used for detecting DP pixel structural parameters.

Surface Radius (mm) Thickness (mm) Material (n/V) Diameter (mm) Conic ay ag ag alo a2
1 (Sphere) 800.000 1.00 1.80810/22.8 27.80 0 0 0 0 0 0
2 (Sphere) 33.296 1.92 25.64 0 0 0 0 0 0
3 (Sphere) 103.801 3.11 2.00100/29.1 25.57 0 0 0 0 0 0
4 (Sphere) -86.901 4.09 25.07 0 0 0 0 0 0
5 (Sphere) -47.674 1.30 1.51742/52.4 20.44 0 0 0 0 0 0
6 (Sphere) 17.367 5.73 1.90043/37.4 21.60 0 0 0 0 0 0
7 (Sphere) 777.674 3.72 21.26 0 0 0 0 0 0
8 (Aper) 3.62 20.16 0 0 0 0 0 0
9 (Sphere) 64.497 2.12 1.69680/55.5 19.04 0 0 0 0 0 0
10 (Sphere) -262.934 3.56 18.69 0 0 0 0 0 0
11 (ASphere) -35.963 1.30 1.58313/59.4 17.10 0 -4.61997e-05 -9.22837e-08 -4.60687e-10  1.65555e-13 0
12 (Sphere) -93.550 0.13 17.19 0 0 0 0 0 0
13 (Sphere) -84.988 6.26 1.88300/40.8 17.29 0 0 0 0 0 0
14 (Sphere) -12.701 1.00 1.85478/24.8 18.97 0 0 0 0 0 0
15 (Sphere) 135.000 5.27 22.77 0 0 0 0 0 0
16 (Sphere) 800.000 7.35 1.90043/37.4 31.72 0 0 0 0 0 0
17 (Sphere) -28.799 0.95 33.14 0 0 0 0 0 0
18 (Sphere) -109.518 2.86 1.69680/55.5 34.06 0 0 0 0 0 0
19 (Sphere) -53.092 11.79 34.38 0 0 0 0 0 0
20 (Sphere) -29.766 1.70 1.59270/35.3 33.78 0 0 0 0 0 0
21 (Sphere) -114.300 11.66 36.27 0 0 0 0 0 0
Sensor 43.27
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Figure S2. Error and similarity matching results of DP pixel structural parameters using the isolation lens. For each subplot, the
horizontal axis represents the corresponding structural parameter, where the values are given in multiples of the pixel size. The left vertical
axis represents the NSD matching result between real and simulated DP PSFs, while the right vertical axis represents the NCC matching
result. To facilitate display, when showing the matching result for any one parameter, we fix the rest of the parameters at their optimal
values according to Eq. (S1). Moreover, we use white dashed lines to mark the optimal value for each parameter.
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Figure S3. Qualitative results of DP PSF for real and ray tracing. We select 5 points within the valid imaging region, and only their
x-coordinates increased sequentially, corresponding to (a) - (e). We provide not only the comparison results of real and ray-traced DP PSF
(PSFy, on the left, PSFr on the right) for these 5 points. We also present the pixel distribution curves for the central row. As the object
point p moves farther away from the optical axis, the real PSF, and PSFr become more phase asymmetric. Our simulated DP PSFs,
obtained through ray tracing, align well with the real DP PSFs.
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Figure S4. Overview of our linear calibration method. The plot shows three components: pixel values from images captured under
varying exposure times, target values derived by scaling the shortest exposure image (pixel values within [0, 35]) according to exposure
time ratios, and the fitted curve obtained by applying a piecewise weighted fitting approach to align original pixel values with target values.
The fitted functions are publicly available in our released code.



def local_dp_psf_render (input, dp_psf,
kernel_size=21):

""" Render DP ir “h local DP PSF.
Use differer D or different pixels.
rgs
input (Tensor): The image to be blurred (
N, , H, )
_psf (Tensor): Per pixel local DP PSFs
(1, H, W, 2, ks, ks)
kernel_size (int): Size of the DP PSFs
Default t 2
eturns:
output r) Rendered DP ima (N, 2

nun

b,c,h,w = input.shape
pad = int ((kernel_size-1)/2)

# 1. pad the input with replicated values
inp_pad = torch.nn.functional.pad (input, pad
= (pad, pad, pad, pad), mode=’replicate’)

# 2. Create a Tensor of varying DP PSF

kernels = dp_psf. reshape( 1, 2, kernel_size,
kernel_size)

kernels_flip = torch.flip(kernels, [-2, -1])

kernels_rgb = torch.stack (cx[kernels_flip],
2)

# 3. Unfold inpu
inp_unf = torch.nn.functional.unfold (inp_pad,
(kernel_size,kernel_size))

# 4. Multiply kernel with unfolded
1 = inp_unf.view(b,c, -1, h*w)

x2_1 = kernels_rgb[:,0, .].view (b, h*xw, c,
-1) .permute (0, 2, 3, 1)

x2_r = kernels_rgb[:,1,...].view(b, h*w, c,
-1) .permute (0, 2, 3, 1)

y_1 = (x1%x2_1).sum(2)

y_r = (x1%x2_r).sum(2)

# 5. Fold output

render_1 = torch.nn.functional.fold(y_1, (h,w)
,(1,1))

render_r = torch.nn.functional.fold(y_r, (h,w)
, (1,1))

return torch.cat ([render_1,render_r], dim=1)

S1.4. DP PSF prediction network

During the training of the DP PSF prediction network, as
described in Sec. 5.1 (Implementation details) of the main
paper, we set the aperture to F/4, ks to 21, and trained for
100,000 iterations. After training, we evaluated the fitting
quality of the DP PSF network.

We present qualitative and quantitative comparison re-
sults between our MLP network and recent work [5, 6],
As shown in Fig. S5, we evaluate DP PSF at three depths
and positions, using ray-traced DP PSF as GT. Their re-
sults show significant errors compared to ray-traced ones at
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Figure S5. Qualitative results of DP PSF prediction networks.
Evaluate the ray-traced and network-predicted (ours, Yang et
al. [6], and Tseng et al. [5]) F/4 DP PSFs at three depths (0.5m,
1.5m, 20m) and positions. For small DP PSF radii, all network
predictions closely match ray-traced results. For larger radii, the
predicted results by [5, 6] show significant deviations, attributed
to differences in normalization schemes with ours during training.

Yang Ours Ray-traced

Tseng

large PSF radii. This is due to their training scheme us-
ing sum normalization for GT, which is effective for small
PSF radii but becomes less accurate for larger ones. In con-
trast, our network, also using only MLP, can predict accu-
rate results at all depths and positions, even at large PSF
radii. The only difference is that we use max normalization
for GT DP PSFs during training, and apply sum normaliza-
tion to the predicted DP PSFs during inference to approxi-
mate the uniform intensity distribution of cameras with vi-
gnetting compensation. Compared to the DP PSF obtained
through ray tracing, the results output by the MLP network
are smoother. This is because the number of rays sampled
in ray tracing is limited by memory and computation time,
with only 4096 rays set.

Table S3. Quantitative results of DP PSF prediction networks.

Method Llerror| L2error] Time (s)
Ray-traced - - 801.544
Ours 6.887e-5  6.830e-8  0.395
Yang et al. [6]  1.487e-4 1.381e-7  0.395
Tseng et al. [S] 1.124e-4  7.685e-7  43.96

We present quantitative results in Tab. S3. Specifically,
we compare L1 and L2 errors for 50 different depths and
positions, as well as the time cost for predicting a DP PSF
map for all pixels (a total of 512 x 768) in the depth map.
Our network outperforms those developed by Yang et al. [6]
and Tseng et al. [5] in accuracy, and its low time cost en-
ables high-speed image rendering. In contrast, the network
proposed by Tseng et al. [5] incurs high time costs due to
its inclusion of convolutional layers.



Overall, rendering a DP image using a DP PSF map is
very fast (with a fixed cost of 0.2 seconds). However, gener-
ating these DP PSFs through ray tracing is time-consuming
(801.544 seconds). We use MLP to save time, achieving
high speed (0.395 seconds), which enables real-time ren-
dering of DP images for DP data-driven tasks during each
iteration.

S2. Depth-from-Dual-Pixel Details
S2.1. Adjustment of cost volume

In the field of DfDP, we do not pursue the optimal DfDP
network structure. Instead, we select [2] as the DfDP model
and make reasonable adjustments to its cost volume step to
accommodate the DP data.

Existing binocular disparity matching algorithms typ-
ically only consider unidirectional disparity shifts when
stacking left and right image features to form the cost vol-
ume. This is because in binocular images, the disparity
formed by points at any depth is always in the same direc-
tion. However, in DP images, the disparity direction formed
by object points before and after the focal distance is oppo-
site. Therefore, as shown in Fig. 4(d) (main paper), we add
reverse disparity while stacking the original disparity. Our
implementation is as follows:

def get_dp_cost_volume (x, y, d_max=20):
""" Get DP image cost volume

rigina disparity and add

reverse

parity.
eft DP image feature (B, C,

: Right DP image feature (B, C,

: Max displacement. Defaults

volume of DP image

2xC, d_max, H, W)

B, C, H, W= x.size()

cost = torch.zeros (B, Cx2, d_max, H, W).
type_as (x)

for i in range (d_max) :
d = i-d_max//2

if d < 0:
cost[[:, :C, i, :, :d]l=x[:, :, :, :d]
cost[:, C:, 1, :, :dl=y[:, :, :, —d:]
elif d == 0:
cost[:, :C, i, :, :]=x
cost[:, C:, 1, :, :]l=y
if d > 0:
cost[:, :C, i, :, d:]l=x[:, , , d:]
cost[:, C:, i, , dil=yl:, ’ , —d]

return cost

S2.2. A new real-world test set DP119

We used the Canon RF50mm lens and Canon R6 Mark II
camera to capture a new dataset, setting the aperture to F/4
and focusing at 1 m. Each scene provides real DP-depth
paired data. Finally, we collected the DP119 dataset, which
includes 45 planar scenes, 44 box scenes, and 30 casual
scenes, totaling 119 scenes.

For the planar scenes, we captured richly textured
posters images from 0.5 m to 2 m perpendicular to the cam-
era’s optical axis, with denser sampling at shallower depths.
The dataset includes five distinct scenes at nine different
distances (0.5 m, 0.6 m, 0.7 m, 0.8 m, 0.9 m, 1.0 m, 1.2 m,
1.5 m, 2 m). Real DP images were captured at apertures F/4
and F/20, adjusting ISO to match light intensity. F/20 im-
ages were used as AiF images, with their depth value copied
into the depth map. Unlike box and casual scenes, pla-
nar scenes have simple depth structures, which avoid com-
mon issues such as holes in LiDAR depth maps and mis-
alignment between depth and RGB images. These scenes
are useful for evaluating both depth estimation models and
the realism of DP simulators. As shown in Fig. S6(a), we
present a sample set of planar scenes.

For the box scenes, we covered all the boxes and back-
grounds with posters. The boxes were randomly placed
within a range of 0.5 m to 2 m, and each time we took
a shot, we significantly adjusted the number, texture, and
placement of the boxes, deliberately creating situations of
overlap, tilt, and occlusion. Depth was captured using the
LiDAR of an iPhone 15 Pro. Both planar and box scenes
are richly textured, aiding the model in utilizing aberration
and phase difference cues for depth estimation. Textureless
areas, even when defocused, do not introduce any aberra-
tions or phase differences, which would interfere with depth
estimation. Therefore, planar and box scenes are ideal for
evaluating whether the DP simulator addresses the domain
gap between simulated and real DP images. As shown in
Fig. S6(b), we present samples of box scenes.

For the casual scenes, we directly captured ordinary
real-world scenes, intentionally controlling the depth within
0.5 m to 10 m, as scenes beyond 10m would yield unreliable
results from the depth sensor. Among the 30 casual scenes,
20 indoor scenes were captured with depth obtained using
a binocular structured-light camera (Orbbec Gemini2). For
the 10 outdoor scenes, since the binocular structured-light
camera performs poorly outdoors, we used the LiDAR of
an iPhone 15 Pro to capture depth. As shown in Fig. S6(c),
we present samples of casual scenes.

S2.3. More DfDP results on the DP119 test set

Fig. S7 presents the depth estimation results of various sim-
ulators on different scenes in the DP119 dataset. From pla-
nar scenes 1 and 2, we observe that due to increased aberra-
tions and asymmetric phase differences at the edge regions,



F/4 RGB

Figure S6. Examples of scenes in the DP119 dataset. Each depth map is decorated with a color bar in meters. (a) Planar scene samples.
The d is the planar depth value at the time of capture. (b) Box scene samples. (c) Casual scene samples.

all models, including ours, exhibit significant relative po-
sitional errors in both central and edge regions. However,
our model provides more accurate absolute depth estimates,
whereas other models tend to bias toward the focus distance
(1 m). The depth estimation results of L2R [1] and Model-
ing [4] are similar, as their DP PSF peak positions are spa-
tially close. A similar trend is observed in box scenes 1 and
2, where other models show a strong bias toward the focal
distance (1 m) and exhibit large relative positional errors in
both central and edge regions. In contrast, our model main-
tains superior performance.

In casual scenes 1 and 2, the textures are rich, and the
scenes are simple. Models can predict depth not only using
aberrations and phase differences but also by leveraging ad-

ditional structural cues. As a result, the relative positional
errors in the center and edge regions were alleviated for all
models in these two scenes. However, the absolute depth
estimates from other models still show a clear bias toward
the focus distance (1 m). Moreover, in casual scenes 3 and
4, large textureless areas appear, missing aberrations and
phase differences. Depth estimation models can only infer
the depth of these textureless areas along structural cues,
leading to significant relative positional errors in textureless
regions for all models.

Overall, our model outperforms others in both relative
and absolute position accuracy. This demonstrates the high
realism of our DP simulator and its ability to bridge the do-
main gap between simulated and real DP images.



GT Depth Modeling

depth=10.7 m

depth=2.0 m

Figure S7. The depth estimation results from different simulators on the DP119 test set. Evaluate DfDP models with L2R [1],
Modeling [4], DDDNet [3] and our Sdirt on various DP119 dataset scenes. Each result image is decorated with a color bar in meters. Their
depth estimation results show partial accuracy in relative positional relationships but large absolute positional errors. Our depth estimation
results, however, demonstrate accurate in both relative and absolute positions with minimal errors. Furthermore, textureless areas lead to
degradation in all models. (Best viewed in color and enlarge on screen.)
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