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Abstract

Many studies utilize dual-pixel (DP) sensor phase in-
formation for various applications, such as depth estima-
tion and deblurring. However, since DP image features
are entirely determined by the camera hardware, DP-depth
paired datasets are very scarce, especially when perform-
ing depth estimation on customized cameras. To overcome
this, studies simulate DP images using ideal optical mod-
els. However, these simulations often violate real optical
propagation laws, leading to poor generalization to real
DP data. To address this, we investigate the domain gap
between simulated and real DP data, and propose solutions
using the Simulating DP Images from Ray Tracing (Sdirt)
scheme. Sdirt generates realistic DP images via ray trac-
ing and integrates them into the depth estimation training
pipeline. Experimental results show that models trained
with Sdirt-simulated images generalize better to real DP
data. The code and collected datasets will be available at
https://github.com/LinYark/Sdirt.

1. Introduction

The DP sensor [15, 29] is designed to split each pixel into
left and right sub-pixels, utilizing microlenses and sub-
pixels to achieve phase splitting. This allows the cap-
ture of a pair of images in one shot, known as DP im-
ages, as shown in Fig. 1(a). DP images are not only used
for autofocus [7, 11, 31], but also improve performance
in tasks such as deblurring [4, 17, 41] and depth esti-
mation [9, 13, 23]. In the field of depth-from-dual-pixel
(DfDP) estimation, the scarcity of DP-depth paired datasets
stems from hardware limitations. To address this, many
studies [2, 16, 18, 23, 26, 37] have focused on simulating
DP images using RGBD datasets, which serve as more flex-
ible and accessible data sources.

The key to simulating DP images from RGBD datasets
lies in accurately modeling the DP point spread func-
tion (PSF). In recent years, numerous model-based and
calibration-based DP PSF simulators have been proposed.
Calibration-based simulators [16, 18, 37] require substantial
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Figure 1. (a) Imaging process of a DP camera. The slight shifts
between the left and right DP images caused by phase differences
are illustrated with white dashed lines. (b) Example comparison
between real and CoC-simulated DP PSFs, showing a significant
difference between them.

time calibrating real cameras to match DP PSFs, but suffer
from issues such as interpolation errors due to discrete cali-
bration points and the neglect of lens and DP sensor param-
eters, limiting model transferability. Model-based simula-
tors [2, 23, 26] employ ideal optical or aberration analysis
models to directly compute DP PSFs, bypassing calibration.
However, these models often perform poorly on real DP im-
ages because they ignore lens aberrations and sensor phase
splitting characteristics. As shown in Fig. 1(b), the ideal
thin-lens model’s simulated circle-of-confusion (CoC) DP
PSF exhibits a significant domain gap with the real PSF, ad-
versely affecting depth estimation.

To bridge the domain gap between real DP images and
DP images simulated by model-based simulators, we pro-
pose Sdirt. Sdirt consists of a ray-traced DP PSF simulator
and a pixel-wise DP image rendering module, which can
accurately generate DP images with aberration and phase
information. Specifically, given a fixed focus lens and DP
sensor system with known parameters, we use ray trac-
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ing [35, 39, 40] to calculate the spatially varying DP PSFs
and train a multilayer perceptron (MLP) to predict them.
Subsequently, we convolve per-pixel DP PSFs with the all-
in-focus (AiF) image to simulate the DP images captured by
areal camera. After training a DfDP model with DP images
simulated by Sdirt, the model can accurately estimate depth
using optical aberration and phase information, enhancing
its ability to generalize to real DP images.

We conduct extensive experiments to validate the effec-
tiveness of Sdirt. The experimental results demonstrate that,
compared to other model-based simulators, the DP PSFs
and DP images generated by Sdirt better resemble real data,
and the DfDP model trained on Sdirt achieves superior gen-
eralization. In summary, our contributions are fourfold:

* We propose a ray-traced DP PSF simulator that computes
spatially varying DP PSFs, addressing the domain gap be-
tween simulated and real DP PSFs caused by lens aberra-
tions and sensor phase splitting.

* We propose a pixel-wise DP image rendering module that
uses an MLP to predict the DP PSF for each pixel, nar-
rowing the gap between simulated and real DP images.

e Depth estimation results show that the DfDP model
trained on Sdirt generalizes better to real DP images.

* We collected DP119, a real DP-depth paired test set with
an open lens structure and fixed focus, featuring diverse
real-world scenes.

2. Related Work
2.1. DP Datasets

Most professional and mobile cameras have DP sensors, but
only Canon cameras [1, 25, 26] and Google Pixel phones [9,
34, 43] offer DP data. In the field of depth estimation, super-
vised tasks rely on DP-depth paired datasets [1, 9, 26, 43].
However, changes in the lens, sensor, focal length, or aper-
ture settings alter the PSFs, making it necessary to re-
acquire DP-depth data. Consequently, many researchers fo-
cus on simulating DP-depth datasets using RGBD data to
reduce data collection costs and improve flexibility.

2.2. DP PSF simulators

Simulating DP images from RGBD datasets relies on DP
PSFs, with recent progress in calibration-based [16, 18, 37]
and model-based [2, 23, 26] DP PSF simulators. In
calibration-based simulators, Xin et al. [37] acquired full-
space DP PSFs by sampling discrete points in space and in-
terpolating, while Li et al. [18] acquired them through size
scaling using the CoC model. Furthermore, Li et al. [16]
generated DP PSFs using a U-Net, which requires a large
amount of DP-depth paired data. Calibration-based simula-
tors are time-consuming and prone to interpolation and scal-
ing errors, while model-based simulators circumvent these
issues. Pan er al. [23] simplified the optical system to an

ideal thin lens and used a symmetrically divided rectangu-
lar aperture to calculate DP PSFs. Punnappurath et al. [26]
modeled the DP PSFs using a depletion kernel that is phase
symmetric, meaning the left and right PSFs of the same ob-
ject point are flip symmetric. Abuolaim et al. [2] used aber-
ration analysis models to calculate DP PSFs, but the result-
ing patterns still remained phase symmetric. These studies
oversimplify optical propagation by neglecting aberrations
and phase splitting, leading to unrealistic domain gaps.

2.3. Applications driven by DP data

In recent years, DP data-driven applications such as depth
estimation [9, 10, 13, 14, 23, 24, 43], deblurring [3, 4, 17,
27, 38, 41, 42], and refocusing [5, 7, 11, 32] have under-
gone rapid development. Additionally, Kang et al. [13] uti-
lized DP data for facial scanning, similar to depth estima-
tion tasks. Wadhwa et al. [34] employed DP data for syn-
thetic shallow depth-of-field imaging, a popular recent ap-
plication in mobile photography. Shi et al. [28] integrated
DP hardware with structured diffractive optical elements for
complex image encoding and high-precision multimodal re-
construction. In addition, DP data can be used for dispar-
ity estimation [22, 36], rain removal [ 18], and reflection re-
moval [25]. It is foreseeable that DP data-driven applica-
tions will continue to emerge in various new fields.

3. Method of Sdirt

To provide the required input for training the DfDP net-
work, Sdirt generates realistic DP images through ray trac-
ing. As shown in Fig. 2(c), the module achieves pixel-wise
rendering of DP images by convolving the DP PSF corre-
sponding to each point in the depth map with the AiF RGB
image. The DP PSF for each point is inferred by a pre-
trained MLP network. As illustrated in Fig. 2(b), the offline
training process of the MLP network uses ray-traced DP
PSFs (Fig. 2(a)) as ground truth (GT).

3.1. Ray-traced DP PSF simulator

As shown in Fig. 2(a), lens ray tracing can accurately obtain
the landing point on the sensor surface [8, 35, 39, 40]. We
construct a ray set A containing n rays, each originating
from an object point p. The aperture stop’s image in object
space is treated as the entrance pupil, from which n points
are densely sampled. Each ray in A is initially directed from
p to its corresponding entrance pupil sample. As rays in A
traverse each lens surface, their positions and directions are
updated by refraction according to Snell’s law and the lens
parameters. After multiple refractions, the rays reach the
sensor plane. We denote the sensor-plane landing points as
O and the corresponding ray directions as D.

DP sensor ray tracing is limited because camera man-
ufacturers do not disclose the structural parameters of the
microlens and sub-pixel components within the DP pixel.
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Figure 2. Simulating Dual-Pixel Images from Ray Tracing pipeline. (a) Ray-traced DP PSF simulator. Calculates spatially varying DP
PSFs for lens and DP sensor through ray tracing. (b) DP PSF prediction network. Trains an MLP network to predict DP PSFs, using the
ray-traced DP PSFs as GT. (c) Pixel-wise DP image rendering module. The network predicts the DP PSFs for all points in the depth map
(red pass). Then, each DP PSF is convolved with the AiF RGB image to render the simulated DP image (blue pass).

As a result, we simplify the DP pixel structure (Fig. 3(a))
based on past research [15, 29]. We model the microlens as
a thin lens with radius 7 and focal length f, and define h
as distance between the sub-pixel and the microlens, w as
sub-pixel width, and ps as DP pixel size.

The DP PSF can be obtained by separately calculating
the cumulative integration of the rays for each sub-pixel.
We analyze which sub-pixel the k-th ray Ay in the ray set A
ultimately enters. Through lens ray tracing, we obtain the
landing point O (xk, Yk, zx) and direction Dy (., Y}, 21,)
of the k-th ray Ay, on the sensor surface. Based on the land-
ing point Oy, we can easily calculate that A lies within
the DP pixel (¢,7), which has surface center coordinates
(24, y:). For O, the situation differs depending on whether
it lies within or outside the microlens:

When Oy, lies within the microlens, as shown in Fig. 3(b),
Ay, is refracted by the microlens and then enters a sub-pixel.
According to geometric optics theory, A and the principal
ray incident on the thin lens at the same angle both con-
verge on the focal plane of the thin lens. We only need to
focus on a few boundary lines xr1, 1, T R1 to determine
which sub-pixel Ay ultimately enters. If xy, is in the inter-
val [z11, 201, it enters the left sub-pixel; if in the inter-
val [z 71, T r1], it enters the right sub-pixel; otherwise, it is
considered a missing ray. The calculation methods for the

boundary lines are as follows:
xp1=x;+w— (fxtand —w) «h/(f — h)
xan =x; — (fxtan@) « h/(f — h) (1
xr1=x; —w— (fxtand +w)«h/(f —h)
Where tan 6 is the tangent of the angle at which Ay lands
on the sensor surface, equivalent to x},/z;,. We provide the
derivation hints for Eq. (1) in Fig. 4(a).
When O lies outside the microlens, as shown in
Fig. 3(c), Ay enters the sub-pixel directly without refrac-
tion. Similarly, checking boundary lines xr2,Zy2, ZR2
suffices to determine which sub-pixel Ay, ultimately enters:
Tr2 =2 +w—hxtand
Ty = x; — h*xtan 2)
Tro = x; —w — h*xtanf
The left PSF (PSF}) can be calculated by integrating

the set of rays A emitted from point p over all left sub-
pixels:

PSFL(i,§) = > Ak % 61,x(i, J) 3)
k=1
where dz, (4, j) represents the energy distribution of ray

Ay in the left sub-pixel at DP pixel (¢,5). The ray en-
ergy distribution is assumed to be a unit impulse, which
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Figure 3. (a) DP pixel structure layout. The left part is a right-side
view, and the right part is a front perspective view. (b) On hitting
the microlens, the k-th ray lands on left/right sub-pixel in red/blue
interval, else missed. (c) Without hitting the microlens, the k-th

ray lands on left/right sub-pixel in red/blue interval, else missed.

equals zero unless it eventually enters the left sub-pixel of
DP pixel (i, j). By following the same calculation steps as
for PSF,, PSFFg can also be computed.

3.2. Pixel-wise DP image rendering module

As shown in Fig. 2(b), we reduce the computational cost of
ray-traced DP PSFs by training an MLP network to predict
them, inspired by [33, 39]. The network input is the normal-
ized coordinate p within the camera’s valid imaging region
(Fig. 4(b)), which is a frustum defined by the field of view,
sensor size, and the preset minimum and maximum depths.
We normalize the (z,y) coordinates to [—1, 1]. After fixing
the focus distance, we set the DP PSF kernel size (ks) large
enough to ensure that the DP PSF for any point within the
valid imaging region can be fully displayed. The network
consists of 5 hidden layers, each containing 512 neurons,
and an output layer with 2 * ks neurons. We adopt the L2
loss to supervise predictions PSFy and PSFp:

Loss = Ly(PSFy, PSFL) 4+ Ly(PSFr, PSFR) (4)

During training, we use ray-traced DP PSFs as GT and
apply max normalization to alleviate learning difficulties
caused by large radii PSFs. During inference, we apply
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Figure 4. (a) Derivation hints for Eq. (1). (b) The valid imaging
region is a frustum, and we normalize the (x,y) coordinates to
[—1,1]. (c) The DfDP model takes DP image as input to predict
the depth map. (d) During cost volume generation in [6], we stack
original disparity (green arrows) and add reverse disparity (blue
arrows), with dy,q. as max displacement.

sum normalization to the predicted DP PSFs, approximat-
ing the uniform intensity distribution in cameras with vi-
gnetting compensation.

Because the DP PSF is shift-variant, we convolve each
pixel’s DP PSF with the AiF image to simulate the DP im-
age captured by a camera. The RGBD dataset [21, 30] pro-
vides the paired RGB image (Ipgp) and depth map (Ip).
As shown in Fig. 2(c), we treat each pixel in I as an object
point and use the trained MLP to predict its DP PSF. Using
Ircp as the AiF image, we apply pixel-wise local convolu-
tion [39] to render the DP image containing aberration and
phase information.

4. DfDP Model Based on Sdirt

As shown in Fig. 4(c), the input to the DfDP model is
provided in real time by the pixel-wise DP image ren-
dering module of Sdirt. At each training iteration, Sdirt
feeds the DfDP model with simulated DP images of shape
(B,6,H, W), where B is the batch size, the number of
channels is 6, and H, W are the DP image height and width.
The model outputs the predicted depth maps (Ip) of shape
(B, 1, H,W). We apply the L1 loss to supervise Ip:

Loss = Li(Ip, Ip) 5)

We select [6] as the DfDP model and make reasonable
adjustments to its cost volume step to accommodate the DP
data. In binocular images, disparity from points at different
depths always has the same direction, thus the cost volume
generation process in [6] is also unidirectional, as shown by
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Figure 5. Qualitative results of simulated DP PSFs. Evaluate the real and simulated (ours, CoC, L2R [2], Modeling [26], and
DDDNet [23]) F/1.8 DP PSFs at two depths (0.5 m and 1.5 m) and three different positions. As the object point p moves further from the
optical axis, the real PSFy, and PSFr become more phase asymmetric, and aberrations increase. Existing simulators neglect aberrations
and DP phase splitting, causing a large gap between simulated and real DP PSFs. Only our ray-traced simulator predicts realistic results at

all depths and positions.

the green arrows in Fig. 4(d). However, in DP images, dis-
parity from object points before and after the focus distance
is opposite in direction. Therefore, we add blue arrows to
extend the cost volume generation, in order to enhance the
DfDP model’s ability to capture reverse disparity.

5. Sdirt Representation Result

5.1. Implementation details

Sdirt employs a Canon RFSOmm lens and an R6 Mark II
camera body as the real camera. The simulated DP sen-
sor has dimensions of 24 mm x 36 mm with a resolution
of 512 x 768. We set the focus distance of both the sim-
ulated and real cameras to 1 m, the valid imaging range to
0.5-20 m, the F-number to F/4, and the ray set A to contain
4096 rays. During MLP training, ks is set to 21 to fully
display the DP PSF of any point within the valid imaging
region. We train the MLP for 100,000 iterations, selecting
128 random points within the valid imaging region during
each iteration. We conducted our experiments on a 12700K
CPU and a 3090 GPU.

Following [39], we assume chromatic aberration is well
corrected compared to other aberrations and defocus effects,
allowing us to use a 550 nm wavelength to reduce ray trac-
ing costs. For details on obtaining the structural parameters
of the DP pixel, please refer to the Supplementary.

5.2. Comparison methods

For comparison, we select all existing model-based DP PSF
simulators: L2R [2], Modeling [26], DDDNet [23], and an
added CoC simulator. Although [24] is a more recent work,
its simulator fully reuses DDDNet [23], so we do not in-
clude it for comparison. Calibration-based simulators and
constraint-training methods are data-driven and require real
DP-depth paired data, making them fundamentally different
from model-based simulators, so no comparison is made.
We directly used the source code of these DP PSF simula-
tors [2, 26], and re-implemented the simulator [23] which
only provided executable files. To ensure fairness, we set
the focus distance, F-number, and sensor size in each simu-
lator to be consistent with ours.

5.3. Evaluation on simulated DP PSFs

To facilitate observation of aberration and phase informa-
tion, we temporarily set the F-numbers of both the simu-
lated and real cameras to F/1.8. We capture a OLED screen
displaying a bright pixel to obtain the real DP PSFs.

As shown in Fig. 5, we evaluate the DP PSF (PSF}, on
the left, PSFRr on the right) of object points p at various
depths and positions within the valid imaging region. Ob-
serving the real DP PSFs, it can be found that defocus (with
focus distance of 1 m) causes a significant phase difference
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between the real PSFy, and PSFR, and the phase differ-
ence at depths of 0.5 m and 1.5 m is opposite. When p is
on the optical axis, all other simulators fail to provide DP
PSF results close to the real ones. Farther from the opti-
cal axis, the real PSFy, and PSFg become phase asym-
metric, with smaller phase differences and more off-axis
aberrations. The differences between DP PSFs from other
simulators and the real ones become more apparent. In con-
trast, our ray-traced simulator predicts accurate results at all
depths and positions.

We present the quantitative results in Tab. 1, using
OpenCV’s normalized squared difference (NSD) and nor-
malized cross-correlation (NCC) to quantify the error and
similarity between the real and simulated DP PSFs. We
sampled 50 DP PSFs at 0.5 m and 1.5 m within the valid
imaging region. Since the real DP PSF has flip symmetry
(not phase symmetry) about both the x and y axes, we per-
formed uniform sampling in the first quadrant. Our method
achieves the highest similarity (0.915 NCC) and lowest er-
ror (0.133 NSD), demonstrating its effectiveness in bridging
the domain gap between simulated and real DP PSFs intro-
duced by lens aberrations and sensor phase splitting.

In all subsequent experiments, the F-number is adjusted
back to F/4 due to the large blur kernel size caused by defo-
cus at F/1.8, which resulted in GPU memory shortages.

F/20 Real
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Figure 6. Qualitative results of simulated DP images. Evaluate the similarity between simulated (ours, CoC, L2R [2], Modeling [26],
and DDDNet [23]) and real F/4 defocused left DP images at two depths (0.5 m and 2 m). Compared to real F/4 defocused images, images
simulated by other methods exhibit varying sizes of patterns, incomplete shapes, and texture shifts in different directions before and after
the focus distance (1 m). Our method produces the most realistic simulated images.

Table 1. Quantitative results of simulated DP PSFs. The NCC
and NSD metrics between simulated and real DP PSFs at 50 points
were evaluated. Our method achieved the highest similarity and
lowest error.

Method Ours CoC L2R[2] Modeling [26] DDDNet [23]

NCCT 0915 0.672  0.638 0.707 0.589
NSD|  0.133 0448 0523 0.423 0.625

5.4. Evaluation on simulated DP images

When comparing simulated and real DP images, to assess
the degradation of simulated DP images caused by defocus
effects at different depths, we captured richly textured pla-
nar scenes from 0.5 m to infinity, perpendicular to the op-
tical axis. Shallower depths were sampled more densely to
better capture defocus variations. This resulted in 56 scenes
with varying depths, including 11 infinite-depth scenes. For
each scene, real DP images were captured at F/4 and F/20.
The F/20 image served as the AiF RGB image, and its
capture-time depth was assigned to the entire depth map.
The F/20 RGB-depth pairs were then input into DP simula-
tors to generate the simulated F/4 defocused DP images.
As shown in Fig. 6, we compare the qualitative results of
the defocused left DP images at depths of 0.5 m and 2 m.
Due to errors in simulating the DP PSF, other methods pro-
duce simulated images with textures shifted to the right at
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Figure 7. Quantitative results of simulated DP images. Eval-
uate the similarity of 56 real and simulated (ours, CoC, L2R [2],
Modeling [26], and DDDNet [23]) planar scene F/4 DP images
at different depths using PSNR (1) and SSIM (1) metrics. As the
depth of simulated images deviates further from the focus distance
(1 m), the less realistic the other methods become, whereas our
scheme maintains the highest accuracy across all depths.

0.5 m depth and to the left at 2 m depth, compared to the real
left DP image. Moreover, other methods show variations in
image texture sizes and incomplete shapes. However, the
DP images simulated by our Sdirt method show minimal
deviation in texture details.

As shown in Fig. 7, which presents the quantitative re-
sults, we assess the similarity between simulated and real
images using PSNR and SSIM. As the simulated image’s
depth moves further away from the focus distance (1 m), the
neglect of aberrations and phase splitting in other methods
leads to a more significant decrease in their metrics. In con-
trast, our Sdirt method achieves the best results at all depths,
with average PSNR/SSIM values of 37.1982/0.9845, indi-
cating that our simulated DP images are highly realistic.

6. DfDP Estimation Results

6.1. Implementation details

To train the DfDP model, we simulate F/4 DP images us-
ing Sdirt on RGBD datasets [21, 30]. The NYU Depth
dataset [30], preprocessed by [12], contains 50,688 in-
door scenes. We adopt the AdamW optimizer [19] and
CosineAnnealing scheduler [20] with an initial learning rate
of 1 x 10~*. The model is trained with a batch size of 4
for 50 epochs. In each epoch, 2,000 randomly selected DP-
depth pairs are used for training. After training, the model is
directly evaluated on a real-world test set without any fine-
tuning to assess its generalization ability.

6.2. A new real-world test set DP119

Unlike previous simulation methods, Sdirt addresses data
scarcity by simulating hardware, requiring consistent cam-
era and setup during training and inference. However, as
shown in Tab. 2, no public dataset satisfies all of the follow-
ing conditions: 1. Real DP-depth paired data for simulating
DP images; 2. A known lens structure for ray tracing; 3.
A fixed focus distance, since changing it alters the DP PSF
of the same object point. This makes evaluation on pub-
lic datasets with unknown hardware impractical. We there-

fore collected the DP119 test set, which contains diverse
test scenes.

Table 2. Summary of existing DP datasets.

DPDD L2R DPNet DP5K DDDNet Modeling DP119

1 21 9 [16  [23] [26]  Ours
Real captured v X v v X v v
Paired depth X v v v v X v
Lens structure v - X v - X v
Fixed focus dist. v/ X X - X v

DP119 consists of 45 planar scenes, 44 box scenes, and
30 casual scenes, totaling 119 scenes. The casual scenes
represent common scenarios, suitable for evaluating the ro-
bustness of simulation models. The planar and box scenes
are richly textured, helping the model utilize aberration
and phase cues for depth estimation. Textureless areas,
even when defocused, lack aberrations or phase differences,
making depth estimation difficult and evaluation unreliable.
Thus, richly textured planar and box scenes are ideal for
assessing domain gaps between simulated and real DP im-
ages. Real DP images are captured by the Canon RF50mm
lens with a R6 Mark II at F/4 and 1 m focus. GT depth
maps for planar scenes are created by the depths at the cap-
ture time, while those for box and casual scenes are obtained
from LiDAR scans. For more information about the DP119
test set, please refer to the Supplementary.

6.3. Evaluation

We present qualitative and quantitative results for the
DfDP model trained by CoC, L2R [2], Modeling [26],
DDDNet [23], and our Sdirt. For a fair comparison, we
deploy their DfDP models using their DP PSF simulator
source code [2, 26] and re-implemented code [23], and have
all models share the same depth estimation network archi-
tecture, initialize from a common CoC pre-trained check-
point, and follow the same implementation details.

Figure 8 shows depth estimation results for four casual
scenes, with a color bar in meters for visualization. It can
be seen that although other methods provide some relative
positional information in the center region, they fail to cor-
rectly estimate relative positional relationships in the edge
regions, and both the center and edge regions have large
absolute positional errors. This is because the DP PSFs pre-
dicted by these methods exhibit phase symmetry and shift-
invariance, whereas real DP PSFs exhibit phase asymmetry,
aberrations, and shift-variance. Their methods’ mismatch
with real DP PSFs leads to significant depth estimation er-
rors, especially near the edges. The results of L2R [2] and
Modeling [26] are similar because the peak positions of
their DP PSFs are quite close. In contrast, our method pro-
vides accurate relative positional information across the en-
tire image area with minimal absolute positional errors, as
our simulated DP PSFs are highly consistent with the real
ones in both the center and edge regions.
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Figure 8. Qualitative results of absolute depth estimation on DP119. Evaluate DfDP models with CoC, L2R [2], Modeling [26],

DDDNet [23] and our Sdirt at four casual scenes. Each result image includes a color bar showing depth in meters. Their depth estimation
results show partial accuracy in relative positional relationships but large absolute positional errors. Our depth estimation results, however,
demonstrate high accuracy in both relative and absolute positions with minimal errors. (Best viewed in color and enlarge on screen.)

Table 3. Quantitative results of absolute depth estimation on
DP119. The DfDP model trained with our Sdirt achieves superior
performance across most scenarios and evaluation metrics.

Scene  Method MAE| MSE| Absr) Sqr)  Acc-1t Acc-2t
Ours 0.0845 0.0109 0.0871 0.0095 0.9849 0.9997
CoC 0.2085 0.1001 0.1801  0.0659 0.6670  0.8990
Planar L2R [2] 0.2418 0.1271 0.2112 0.0841 0.6319 0.8536

Modeling [26]  0.2284 0.1142 0.2004 0.0766 0.6496  0.8725
DDDNet [23]  0.2583  0.1485 0.2191 0.0958 0.5648 0.8089

Ours 0.1197  0.0339 0.0906 0.0231 0.9474  0.9812
CoC 0.3375 0.1804 0.2442 0.1116 0.4412  0.8277
Box L2R [2] 0.3866 0.2284 0.2803 0.1412 0.3651 0.7156

Modeling [26]  0.3655 0.2055 0.2660 0.1278 0.3907  0.7758
DDDNet [23]  0.4177 0.2676 0.2975 0.1636 0.3456  0.6274

Ours 0.2702  0.2294 0.4632 0.7241 0.8236 0.9314
CoC 0.7925 1.8579 0.5461 0.6821 0.3318 0.6103
Casual L2R [2] 0.8170 1.7487 0.5597 0.6719 0.2760  0.5315

Modeling [26]  0.7934 1.7256 0.5510 0.6655 0.2978  0.5732
DDDNet [23]  0.8931 2.0624 0.5752 0.7135 0.2481  0.4685

We evaluate all models on the DP119 test set using the
following metrics to assess depth estimation performance:
mean absolute error (MAE), mean squared error (MSE), ab-
solute relative error (Abs.r.), squared relative error (Sq.r.),
accuracy with 6 < 1.25 (Acc-1) and accuracy with § <
1.252 (Acc-2). Since the planar and box scenes are richly
textured and do not have interference from textureless ar-
eas, the simulation models can rely on abundant aberration
and phase difference cues for depth estimation. As shown
in Tab. 3, in the simplest planar scene, our model achieves
the best results across all metrics (0.9849 Acc-1). In the box
scenes, all models experience a performance drop compared
to the planar scenes, but we still achieve the optimal metrics
(0.9474 Acc-1). These results demonstrate that our model is
highly realistic and effectively bridges the domain gap be-
tween simulated and real DP images. Furthermore, we test
the robustness of all models on the casual scenes. Due to

the textureless areas in the casual scenes, the performance
of all models significantly degrades. However, our model
still achieves the best metrics (0.8236 Acc-1), far surpassing
the second-best model (0.3318 Acc-1). This further demon-
strates that our model is the most realistic and has the best
generalization performance. For more sample results from
the DP119 test set, please refer to the Supplementary.

7. Conclusion and Discussion

Simulated DP images help address the scarcity of DP-depth
paired data but face a domain gap between simulated and
real DP data. In this work, we propose a novel simulation
framework called Sdirt to bridge this gap. Specifically, we
calculate the DP PSF for points in object space using ray
tracing, and employ a network to predict them. Then, we
render DP images based on the predicted DP PSFs. Exper-
imental results show that the proposed Sdirt can simulate
more realistic DP data. Moreover, depth estimation models
trained based on Sdirt generalize better to real DP images.

We believe that Sdirt is not limited to DfDP tasks, it can
provide extra depth information for any task with known op-
tical imaging system parameters, promising significant ap-
plications in scenarios such as smartphones, automobiles,
and microscopes in the future. However, Sdirt is only ap-
plicable to cameras equipped with a fixed-focus lens (the
structure must be open) and a DP sensor (DP images must
be available). Currently, only Canon (5D4, R series) meets
these requirements. To further expand the application of
Sdirt, more camera and smartphone manufacturers need to
make these data accessible.
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